Answer:
D. the ability to exercise for longer periods of time
Explanation:
For example, when someone does endurance training, they are stretching their body's ability to do a certain exercise for longer times as opposed to increasing strength.
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
The solution is:
Paige's force is (somewhat) against the direction of motion: Work = F * d Where F is the force; andd is the distance
Our f is 64 N and our distance is 20 and -3.6Plugging that in our equation will give us:
= 64N * cos20º * -3.6m = -217 J
There's no digram because I'm mr lemonade mr French fries
An electric engine turning a workshop sanding rotation at 1.00 × 10² rev/min is switched off. Take the wheel includes a regular negative angular acceleration of volume 2.00 rad/s². 5.25 moments long it takes the grinding rotation to control.
<h3>What is negative angular acceleration?</h3>
- A particle that has a negative angular velocity rotates counterclockwise.
- Negative angular acceleration () is a "push" that is hence counterclockwise.
- The body will speed up or slow down depending on whether and have the same sign (and eventually go in reverse).
- For instance, when an object rotating counterclockwise slows down, acceleration would be negative.
- If a rotating body's angular speed is seen to grow in a clockwise direction and decrease in a counterclockwise direction, it is given a negative sign.
- It is known that a change in the linear acceleration correlates to a change in the linear velocity.
Let t be the time taken to stop.
ω = 0 rad/s
Use the first equation of motion for rotational motion
ω = ωo + α t
0 = 10.5 - 2 x t
t = 5.25 second
To learn more about angular acceleration, refer to:
brainly.com/question/21278452
#SPJ4