The gravitational force between two masses is given by:

where
G is the gravitational constant
m1 and m2 are the two masses
r is the separation between the two masses
We see that the force is proportional to the inverse of the square of the distance:

therefore, if the distance is tripled:
r'=3r
The force decreases by a factor 1/9:

Since the original force was 36 N, the new force will be
Answer:
there is friction between the two things
Explanation:
Explanation:
Internal energy = heat + work
U = Q + W
Since there's no change in volume (rigid walls), W = 0.
U = Q
U = n Cᵥ ΔT
U = (4.0 mol) (2.5 × 8.314 J/mol/K) (354 C − 17 C)
U = 28,000 J
Answer:
5 no
Explanation:
actually the 4kg lying on table has no influence
it slides towards 4kg weight hung
as it has excess 2kg force
force=miu × m ×g
The distance between Jupiter and the sun is 5.2 AU.
According to Kepler's third law, the square of the period of revolution of planets is proportional to the cube of their mean distances from the sun. From this; T^2 = r^3.
Now, we are told that the orbital period (T) is 11. 9 Earth years. We have to make the distance the subject of the formula.
r =T^2/3
r = (11.9)^2/3
r = 5.2 AU
Learn more: brainly.com/question/15207516