1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
8

What keeps the balanced rock balanced

Physics
1 answer:
pogonyaev3 years ago
5 0
Hello,

Here is your answer: 

The proper answer to this question is "because of there substantial size the rock rests on another rock which keeps it balanced".

If you need anymore help feel free to ask me!

Hope this helps!
You might be interested in
More current makes a ________ electromagnet.<br> longer<br> stronger<br> weaker
Taya2010 [7]

Answer: Stronger

Explanation:

I just took it

7 0
3 years ago
Read 2 more answers
A stone is dropped into a river from a bridge 41.7 m above the water. Another stone is thrown vertically down 1.80 s after the f
hram777 [196]

Answer:

31.75 m/s

Explanation:

h = 41.7 m

Let the initial velocity of the second stone is u

Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.

For first stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7

So, 41.7= 0 + 0.5 x 9.8 x t^2

41.7 = 4.9 t^2

t = 2.92 s ..... (1)

For second stone:

Use second equation of motion

h=ut+\frac{1}{2}gt^2

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity

h=u\left ( t-1.8 \right )+4.9\left ( t-1.8 \right )^2    .... (2)

By equation the equation (1) and (2), we get

41.7=1.12 u +4.9 \times 1.12^{2}

u = 31.75 m/s

5 0
3 years ago
Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.
elena-s [515]

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

4 0
3 years ago
Answer the following question​
Ray Of Light [21]

Answer:

A) OA, AB, BC

B) 25m/s^2

C) see explanation

D) 25

E) Rest

Explanation:

From the Velocity time graph shown:

The positive slope = OA ; This is positive because, it is the point of uniform acceleration on the graph.

Constant slope = AB, the slope here is constant because, AB on the graph is the point of constant velocity.

-ve slope = BC

B) Acceleration of body in path OA.

Acceleration = change in Velocity / time

Acceleration = (150 - 0) / 6

Acceleration = 150/6 = 25m/s^2

C) Path AB is Parallel to the because it marks the period of constant velocity (that is Velocity does not increase or decrease during the time interval).

D) Length of BC

BC corresponds to the distance moved, that velocity / time

Velocity = 150 ; time = 6

Therefore Distance (BC) = 150/6 = 25

E.) Velocity =0 ; Hence body is at rest

5 0
3 years ago
Answer ?
morpeh [17]

Answer:

2.75 m/s^2

Explanation:

The airplane's acceleration on the runway was 2.75 m/s^2

We can find the acceleration by using the equation: a = (v-u)/t

where a is acceleration, v is final velocity, u is initial velocity, and t is time.

In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1

a = 2.75 m/s^2

5 0
2 years ago
Other questions:
  • When red-headed woodpeckers (melanerpes erythrocephalus) strike the trunk of a tree, they can experience an acceleration ten tim
    12·1 answer
  • Which errors might occur when measuring length of object​
    10·1 answer
  • What will happen when two objects with opposite electric charges are moved closer together?
    7·2 answers
  • A camcorder has a power rating of 13 watts. If the output voltage from its battery is 6 volts, what current does it use?
    9·1 answer
  • Give me an example of an situation in which it would an advantage to use a pulley to do work . PLEAZE HELP ME ASAP (NOW)!!!!!!!!
    14·2 answers
  • In a television picture tube, electrons strike the screen after being accelerated from rest through a potential difference of 27
    11·1 answer
  • Imagine a rock is dropped from the top of a tall building. After 2 seconds of falling, the rock’s instantaneous speed is approxi
    14·2 answers
  • What do you think we can learn about Earth's history by looking at the Grand Canyon?
    6·1 answer
  • Please solve it asap ty!
    12·1 answer
  • Please answer this question ​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!