Answer:
pass hahaha dkopa alam yarn
Atoms in covalent bonds do combine so as to be stable. As covalent bond consist non metals e.g O2 in this example each atom has vacance of 2 orbitals/ electrons so shairing electrons result their stability
the calculated value is Ea is 18.2 KJ and A is 12.27.
According to the exponential part in the Arrhenius equation, a reaction's rate constant rises exponentially as the activation energy falls. The rate also grows exponentially because the rate of a reaction is precisely proportional to its rate constant.
At 500K, K=0.02s−1
At 700K, k=0.07s −1
The Arrhenius equation can be used to calculate Ea and A.
RT=k=Ae Ea
lnk=lnA+(RT−Ea)
At 500 K,
ln0.02=lnA+500R−Ea
500R Ea (1) At 700K lnA=ln (0.02) + 500R
lnA = ln (0.07) + 700REa (2)
Adding (1) to (2)
700REa100R1[5Ea-7Ea] = 0.02) +500REa=0.07) +700REa.
=ln [0.02/0 .07]
Ea= 2/35×100×8.314×1.2528
Ea =18227.6J
Ea =18.2KJ
Changing the value of E an in (1),
lnA=0.02) + 500×8.314/18227.6
= (−3.9120) +4.3848
lnA=0.4728
logA=1.0889
A=antilog (1.0889)
A=12.27
Consequently, Ea is 18.2 KJ and A is 12.27.
Learn more about Arrhenius equation here-
brainly.com/question/12907018
#SPJ4
First, 55 g of Hg is 3.65 moles because one mole of Hg has a molar mass of 200.59
Then, the mole ratio of Hg to CaO is 8:4 or 2:1. SO we divide 3.65 by 2 to get 1.82 moles of CaO
This is the same as 102.06 grams because one mole of CaO has a molar mass of 56.0774
Hope this helps!