Explanation:
The partial pressure of an individual gas is equal to the total pressure of the mixture multiplied by the mole fraction of the gas.
Total pressure = 2atm
Mole Fraction = number of moles / total number of moles
Neon
Mole Fraction = 4.46 / 7.35 = 0.607
Partial Pressure = 0.607 * 2 = 1.214 atm
Argon
Mole Fraction = 0.74 / 7.35 = 0.101
Partial Pressure = 0.101 * 2 = 0.202 atm
Xenon
Mole Fraction = 2.15 / 7.35 = 0.293
Partial Pressure = 0.293 * 2 = 0.586 atm
Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.
A patient who is prescribed a dose inhaler will find that it must be filled with a) medicine in powder form only. Works with lower (not upper) respiratory diseases only. Full of medicine used to give a fixed amount of medicine per oral inhalation. d) Medication in the form of a spray only.
According to the valence shell electron pair repulsion (VSPER) theory, an ammonia molecule <span> has a </span>trigonal pyramidal<span> shape with an experimental bond angle measure of 106.7 degrees. This is why it is difficult to accurately represent ammonia two-dimensionally because the molecular structure entails a 3-D projection with angles in it unlike the linear structure.</span>