An ester is the reaction product between A. alcohol and organic acid.
Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation
Answer:
<u>Our beaches would be unprotected</u>
In the short-term, these artificial sand hills will be destroyed by the elements. Because sand dunes protect inland areas from swells, tides, and winds, they must be protected and defended like national treasures. ... The ocean and the wind can have an unpredictable, destructive force on coastal regions.
- surfertoday
Natural sand dunes play a vital role in protecting our beaches, coastline and coastal developments from coastal hazards such as erosion, coastal flooding and storm damage. Sand dunes protect our shorelines from coastal erosion and provide shelter from the wind and sea spray.
- Waikato Regional Council
Answer:
See the images below
Step-by-step explanation:
To draw a dot diagram of an atom, you locate the element in the Periodic Table and figure out how many valence electrons it has. Then you distribute the electrons as dots around the atom,
a. Silicon.
Si is in Group 14, so it has four valence electrons.
b. Xenon
Xenon is in Group 18, so it has eight valence electrons. We group them as four pairs around the xenon atom.
c. Calcium
Calcium is in Group 2, so it has two valence electrons. They are in a single subshell, so we write them as a pair on the calcium atom.
d. Water
Oxygen is in Group 16, so it has six valence electrons. The hydrogen atoms each contribute one electron, so there are eight valence electrons.
Chemists often use a dash to represent a pair of electrons in a bond.