Answer:
<em><u>Isozymes</u></em>
Explanation:
Isozymes are enzymes that differ in amino acid sequence but catalyze the same chemical reaction. These enzymes usually display different kinetic parameters, or different regulatory properties.
Answer: The final molarity of a 20mL- 1.3M salt solution after it has been diluted with 100ml water is 0.22 M
Explanation:
According to the dilution law,
where,
= molarity of stock solution = 1.3 M
= volume of stock solution = 20 ml
= molarity of diluted solution = ?
= volume of diluted solution = (20+100) ml = 120 ml
Putting in the values we get:
Therefore the final molarity of a 20mL- 1.3M salt solution after it has been diluted with 100ml water is 0.22 M
= 6.022 × 1020
Explanation<em>;</em>
Mole of aluminium oxide (Al2O3) is
⇒ 2 x 27 + 3 x 16
Mole of aluminium oxide = 102 g
i.e., 102 g of Al2O3= 6.022 x 1023 molecules of Al2O3
Then, 0.051 g of Al2O3 contains = 6.022 x 1023 / (102 x 0.051 molecules)
= 3.011 x 1020 molecules of Al2O3
The number of aluminium ions (Al3+) present in one molecule of aluminium oxide is 2.
Therefore, the number of aluminium ions (Al3+) present in 3.11 × 1020 molecules (0.051g) of aluminium oxide (Al2O3)
= 2 × 3.011 × 1020
=<em> 6.022 × 1020</em>
<em>hope </em><em>it </em><em>helps</em><em>_</em>
The correct answer for the given question above would be option A. The number of electrons shared <span> in the multiple carbon-carbon bond in one molecule of 1-pentyne is 6. -YNE is considered as a triple bond. This would mean 3 pairs of electrons of 6 electrons. Hope this answers your question. Have a great day!</span>
Moving the electron away from the nucleus requires energy, so the electrons in the outer shell will have more energy than ones in the inner shell. Electrons always have a charge of -1, so the charge in the inner and outer shell will be the same. Therefore the answer is 3