Answer:
The correct answer is option D.
Explanation:
Rate of the reaction is a change in the concentration of any one of the reactant or product per unit time.

Rate of the reaction:
![R=-\frac{1}{1}\times \frac{d[NO_2]}{dt}=-\frac{1}{1}\times \frac{d[CO]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BCO%5D%7D%7Bdt%7D)
Rate of decrease in nitrogen dioxide concentration is equal to the rate of decrease in carbon monoxide.
Given rate expression of the reaction:
![R = k[NO2]^2[CO]](https://tex.z-dn.net/?f=R%20%3D%20k%5BNO2%5D%5E2%5BCO%5D)
Rate of the reaction on doubling concentration of nitrogen dioxide and carbon monoxide : R'
![R'=k(2\times [NO_2])^2(2\times [CO])=8\times k[NO2]^2[CO]=8R](https://tex.z-dn.net/?f=R%27%3Dk%282%5Ctimes%20%5BNO_2%5D%29%5E2%282%5Ctimes%20%5BCO%5D%29%3D8%5Ctimes%20k%5BNO2%5D%5E2%5BCO%5D%3D8R)
Doubling the concentrations of nitrogen dioxide and carbon monoxide simultaneously will increase the rate of the reaction by a factor of eight.
Hence, none of the given statements are true.
I believe the answer you are looking for is : SHORT
Answer:
35 °C is the final temperature.
Comment if you need step to step explanation.
The big bang did not produce a significant proportion of elements heavier than helium because the temperatures and densities present in the early universe were not sufficient to support the fusion of heavier elements.
During the first few minute of the big bang, the universe was composed of mostly hydrogen and helium, with very small amounts of lithium and beryllium. As the universe expanded and cooled, the denser regions of the universe collapsed to form the first stars. Inside these stars, the intense pressure and heat generated by nuclear fusion reactions allowed for the production of heavier elements, such as carbon and oxygen. However, elements heavier than helium, such as iron and nickel, require even higher temperatures and densities to be produced, which can only be found in the cores of supernovae. Therefore, the big bang alone did not produce a significant proportion of elements heavier than helium.
to know more about compounds-
brainly.com/question/12166462
#SPJ4