Given: m ∠3 = m ∠4
To Prove: ∠1, ∠2 are supplementary .
Proof : m ∠3 = m ∠4 ( Given) ------------(1)
m<2 + m< 3 = 180 degrees ( <2 and <3 form a linear pair). ----------(2)
m< 4 = m<1 (Vertical angles are equal) -----------(3).
Substituting, m<4 =m<1 in (1), we get
m ∠3 = m ∠1.
Now, substituting m ∠3 = m ∠1 in (2), we get
m<2 + m< 1 = 180 degrees.
Sum of m <1 and m<2 is 180 degrees.
Therefore,<em> ∠1, ∠2 are supplementary by the defination of supplementary angles.</em>
Answer:
O is the center of the circle with radius IE(=ID=EF)
Step-by-step explanation:
Join all 3 points D, E, F, forming the triangle DEF.
Let the midpoint of EF be M and the midpoint of ED be N. (first picture)
Join point I to E, D and F.
Since IN is both an altitude and median to triangle EID, then triangle EID is an isosceles triangle, and IE=ID
similarly, we see that IE=IF.
conclusion: IE=ID=EF.
Answer:
6^2
Step-by-step explanation:
it is a division between two power with the same base, so we have to subtract the exponents
6^(6-4) = 6^2
3x^2 - 7x + 12 = 0 ....subtract 12 from both sides
3x^2 - 7x = -12 ....divide both sides by 3 to get x^2 by itself
x^2 - 7/3x = -4
His work is not accurate because he divided the second term by 4 instead of 3.