Answer:
temperature and mass
Explanation:
- The higher the temperature of a given quantity of a substance, more is its thermal energy.
- If a substance contains more mass, this also implies that the object has more particles in it . hence, it has high thermal energy.
<em><u>A</u></em><em><u>d</u></em><em><u>d</u></em><em><u>i</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u>a</u></em><em><u>l</u></em><em><u> </u></em><em><u>I</u></em><em><u>n</u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em>:
- Temperature is a measure of the average kinetic energy of the particles of a substance.
- The thermal energy of an object depends on three factors:
- number of molecules in the object
- temperature of the object.
- thermal energy it has.
You have it exactly backwards.
IN ORDER TO run a certain distance in less time,
you must increase your speed. That's the only way.
To solve this problem we will apply the work theorem which is expressed as the force applied to displace a body. Considering that body strength is equivalent to weight, we will make the following considerations



Work done to upward the object



Horizontal Force applied while carrying 10m,


Height descended in setting the child down




For full time, assuming that the total value of work is always expressed in terms of its symbol, it would be zero, since at first it performs the same work that is later complemented in a negative way.
To develop this problem we will apply the concepts related to the conservation of momentum. For this purpose, the initial momentum will be equivalent to the initial momentum of the two objects when they have the same speed. Mathematically this can be expressed as,

Where,
= Mass of bullet
= Velocity of bullet
= Mass of wooden block
Velocity of Wooden block
Inititally
then we have that the expression can be rearrange to find the velocity of the bullet,

Replacing with our values


Therefore the velocity of the bullet before striking the block is 319.6m/s