Answer: The correct answer is "the speed of the wave becomes four times".
Explanation:
The relation between the speed, frequency and the wavelength is as follows:
v=f\lambda
Here, v is the speed of the wave, f is the frequency and \lambda is the wavelength.
The speed of the sound wave is directly proportional to the frequency.
In the given problem, if the speed of the sound wave is increased four times then the speed of the sound becomes four times.
Therefore, the speed of the sound wave becomes four times.
Answer:
750W
Explanation:
40×10= 400N
work done= force × distance
=400 × 75
=30000 J
Power= work done/ time
= 30000 ÷ 40
= 750 W
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer:

Explanation:
<u>Dimensional Analysis</u>
It's given the relation between quantities A, B, and C as follows:

and the dimensions of each variable is:



Substituting the dimensions into the relation (the coefficient is not important in dimension analysis):

Operating:


Equating the exponents:


Adding both equations:

Solving:


Answer:
