In calculating the energy of a photon of light, we need the relationship for energy and the frequency which is expressed as:
E=hv
where h is the Planck's constant (6.626 x 10-34 J s)and v is the frequency.
E = 6.626 x 10-34 J s (<span>7.33 x 10^14 /s) = 4.857 x 10^-19 J</span>
Answer:
S = 27500J / 308.15molK
Explanation:
Entropy measures the degree of disorganization of a system. It is measured in the entropy change that is equal to the heat exchanged divided by the temperature at which the process occurs.
S2-S1 = Q / T
S = entropy
Q = heat = 27.5 kJ / mol * 1000J / 1KJ = 27500J / mol
T = temperature = 35 + 273.15 = 308.15K
units = J / molK
S = 27500J / 308.15molK
Answer:
m = 3 kg
The mass m is 3 kg
Explanation:
From the equations of motion;
s = 0.5(u+v)t
Making t thr subject of formula;
t = 2s/(u+v)
t = time taken
s = distance travelled during deceleration = 62.5 m
u = initial speed = 25 m/s
v = final velocity = 0
Substituting the given values;
t = (2×62.5)/(25+0)
t = 5
Since, t = 5 the acceleration during this period is;
acceleration a = ∆v/t = (v-u)/t
a = (25)/5
a = 5 m/s^2
Force F = mass × acceleration
F = ma
Making m the subject of formula;
m = F/a
net force F = 15.0N
Substituting the values
m = 15/5
m = 3 kg
The mass m is 3 kg
Rhythms that occur faster and slower than the beat are b.<span>not synchronized with the time signature. The synchronization follows the same beat or rhythm. If the time signature say is lower than the original, then the rhythm should be faster. Otherwise, the rhythm is slower than the original one.</span>