According to the <u>Third Kepler’s Law of Planetary motion</u> “<em>The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
<h2>

(1)
</h2>
Where;
is the Gravitational Constant and its value is 
is the mass of Jupiter
is the semimajor axis of the orbit Io describes around Jupiter (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
<h2>

(2)
</h2>
Then:
<h2>

(3)
</h2>
Which is the same as:
<h2>

</h2>
Therefore, the answer is:
The orbital period of Io is 42.482 h
Answer:
C) Check that the numerical answer is reasonable and the units are what you expected.
Explanation:
I think the correct answer would be B. The process of elastic rebound is being shown by the student. It is a theory that is used to explain earthquakes. It focuses on how energy is being spread in times of earthquakes. As the rocks on the fault experiences shift and force, these rocks would be accumulating energy causing it to deform reaching the internal strength and eventually exceeding it. At that moment, a rapid motion would happen along the fault, which releases the energy, then the rocks would go back to its original shape or the undeformed state. This theory is the first theory that sufficiently was able to explain earthquakes.
When an object is dropped, tossed, or kicked, as long as it is not laying on the ground, it accelerates downward, because of the force of gravity acting on it.