Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Answer:
The second one is the correct statement.
Explanation:
An atom consists of a dense, heavy, positively charged central part called nucleus. It consists of neutrons and protons.
The electrons revolves around the nucleus in circular paths. These electrons are called planetary electrons because they can be compared to various planets revolving around the sun and the nucleus is compared with sun.
The answer would be B.
U-238 has a n to p ration of 1.6:1. 146 neutrons and 92 protons.
It is actually the most commonly used isotope is reactors.
C-14 is also a radioactive isotope with 8 neutrons and 6 protons.
The usual and ideal n to p ratio is 1:1 such as C-12 or Mg-24
Answer:
483 nm corresponds to blue light hence the complex will appear orange.
Explanation:
Using the formula;
E= hc/λ
Where;
E = energy of the photon
h = Plank's constant (6.6*10^-34Js)
c = Speed of light (3*10^8 ms-1)
λ = wavelength
λ = hc/E
λ = 6.6*10^-34 * 3*10^8/4.10×10^−19
λ = 4.83 * 10^-7 or 483 nm
483 nm corresponds to blue light
Using the colour wheel approach, if a complex absorbs blue light, then it will appear orange.
Answer:
there is only 2 oxygen's in NaO2
Explanation:
Na O2