Answer:
ik ppl sy no links but https://courses.lumenlearning.com/cheminter/chapter/the-ph-scale/
Explanation: it should help you
Answer:
Ka = 0.1815
Explanation:
Chromic acid
pH = ?
Concentration = 0.078 M
Ka = ?
HCl
conc. = 0.059M
pH = -log(H+)
pH = -log(0.059) = 1.23
pH of chromic acid = 1.23
Step 1 - Set up Initial, Change, Equilibrium table;
H2CrO4 ⇄ H+ + HCrO4−
Initial - 0.078M 0 0
Change : -x +x +x
Equilibrium : 0.078-x x x
Step 2- Write Ka as Ratio of Conjugate Base to Acid
The dissociation constant Ka is [H+] [HCrO4−] / [H2CrO4].
Step 3 - Plug in Values from the Table
Ka = x * x / 0.078-x
Step 4 - Note that x is Related to pH and Calculate Ka
[H+] = 10^-pH.
Since x = [H+] and you know the pH of the solution,
you can write x = 10^-1.23.
It is now possible to find a numerical value for Ka.
Ka = (10^-1.23))^2 / (0.078 - 10^-1.23) = 0.00347 / 0.0191156
Ka = 0.1815
Answer:
D)
Explanation:
This seems like a weird question
Water is held together by covalent bonds. The amount of energy required to break these bonds so that water would split into it's respective ions is pretty high. The chances that any one of the molecules floating in 1L of water get enough energy to spontaneously burst into it's ions is slim to none.
So, D) seems like the most likely answer
Make sure that you understand what they are asking you from this question, as it can be confusing, but the solution is quite simple. They are stating that they want you to calculate the final concentration of 6.0M HCl once a dilution has been made from 2.0 mL to 500.0 mL. They have given us three values, the initial concentration, initial volume and the final volume. So, we are able to employ the following equation:
C1V1 = C2V2
(6.0M)(2.0mL) = C2(500.0mL)
Therefore, the final concentration, C2 = 0.024M.
Answer:
2 L
Explanation:
From the question given above, the following data were obtained:
Molarity of LiF = 2 M
Mole of LiF = 4 moles
Volume =?
Molarity of a solution is simply defined as the mole per unit litre of the solution. Mathematically, it is expressed as:
Molarity = mole / Volume
With the above formula, we can obtain the volume of the solution as shown below:
Molarity of LiF = 2 M
Mole of LiF = 4 moles
Volume =?
Molarity = mole / Volume
2 = 4 / volume
Cross multiply
2 × volume = 4
Divide both side by 2
Volume = 4/2
Volume = 2 L
Therefore, the volume of the solution is 2 L.