Answer:
The reaction will be non spontaneous at these concentrations.
Explanation:

Expression for an equilibrium constant
:
![K_c=\frac{[Ag^+][Br^-]}{[AgCl]}=\frac{[Ag^+][Br^-]}{1}=[Ag^+][Br^-]](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BAgCl%5D%7D%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B1%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D)
Solubility product of the reaction:
![K_{sp}=[Ag^+][Br^-]=K_c=7.7\times 10^{-13}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3DK_c%3D7.7%5Ctimes%2010%5E%7B-13%7D%20)
Reaction between Gibb's free energy and equilibrium constant if given as:


![\Delta G^o=-2.303\times 8.314 J/K mol\times 298 K\times \log[7.7\times 10^{-13}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-2.303%5Ctimes%208.314%20J%2FK%20mol%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B7.7%5Ctimes%2010%5E%7B-13%7D%5D)

Gibb's free energy when concentration
and ![[Br^-] = 1.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BBr%5E-%5D%20%3D%201.0%5Ctimes%2010%5E%7B-3%7D%20M)
Reaction quotient of an equilibrium = Q
![Q=[Ag^+][Br^-]=1.0\times 10^{-2} M\times 1.0\times 10^{-3} M=1.0\times 10^{-5}](https://tex.z-dn.net/?f=Q%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3D1.0%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%201.0%5Ctimes%2010%5E%7B-3%7D%20M%3D1.0%5Ctimes%2010%5E%7B-5%7D)

![\Delta G=69.117 kJ/mol+(2.303\times 8.314 Joule/mol K\times 298 K\times \log[1.0\times 10^{-5}])](https://tex.z-dn.net/?f=%5CDelta%20G%3D69.117%20kJ%2Fmol%2B%282.303%5Ctimes%208.314%20Joule%2Fmol%20K%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B1.0%5Ctimes%2010%5E%7B-5%7D%5D%29)

- For reaction to spontaneous reaction:
. - For reaction to non spontaneous reaction:
.
Since ,the value of Gibbs free energy is greater than zero which means reaction will be non spontaneous at these concentrations
Answer:
Ea= -175.45J
A= 3.5×10^14
k=3.64 ×10^14 s^2.
Explanation:
From
ln k= -(Ea/R) (1/T) + ln A
This is similar to the equation of a straight line:
y= mx + c
Where m= -(Ea/R)
c= ln A
y= ln k
a)
Therefore
21.10 3 104= -(Ea/8.314)
Ea=-( 21.10 3 104×8.314)
Ea= -175.45J
b) ln A= 33.5
A= e^33.5
A= 3.5×10^14
c)
k= Ae^-Ea/RT
k= 3.5×10^14 × e^ -(-175.45/8.314×531)
k = 3.64 ×10^14 s^2.
One of the products of photosynthesis is carbon dioxide
Some hydrocarbons are regarded as unsaturated because they contain double or triple bonds between adjacent carbon atoms.
<h3>What are hydrocarbons?</h3>
Hydrocarbons are any organic compounds that contain hydrogen and carbon in its structure.
Hydrocarbons can be grouped into the following based on whether they contain single or double bonds:
- Saturated hydrocarbons - contain only single bonds e.g. alkanes
- Unsaturated hydrocarbons - contain double and triple bonds e.g. alkenes
Therefore, it can be said that some hydrocarbons are regarded as unsaturated because they contain double or triple bonds between adjacent carbon atoms.
Learn more about hydrocarbons at: brainly.com/question/17578846
Answer:
i cant see the whats in the picture