In order to determine the concentration of ammonium ions in
the solution prepared by mixing solutions of ammonium sulfate, (NH4)2SO4, and ammonium
nitrate, first calculate the amount of ammonium ions for each solution.<span>
<span>For ammonium sulfate sol'n: 0.360 L x 0.250 mol(NH4)2SO4/ L x 2 mol NH4+ /1 mol(NH4)2SO4 =
0.18 mol NH4+
<span>For ammonium nitrate sol'n: 0.675 x 1.2 mol NH4NO3/L x 1 mol NH4+ /1 molNH4NO3
= 0.81 mol NH4+
Thus, the amount of NH4+ ions is (0.18 + 0.81) mol or 0.99
mol NH4+. To get the concentration, multiply this to the volume of solution
which is assumed to be additive, such that:</span></span></span>
M NH4+ in sol’n = 0.99 mol NH4+/1.035 L = 0.9565 mol NH4+/ L
sol’n
Explanation:
Given problem:
Find the molar mass of:
SO₃ and C₁₀H₈
Solution:
The molar mass of a compound is the mass in grams of one mole of the substance.
To solve this, we are going to add the individual atomic masses of the elements in the compound;
Atomic mass;
S = 32g/mol; O = 16g/mol; C = 12g/mol and H = 1g/mol
For SO₃;
= 32 + 3(16)
= 32 + 48
= 80g/mol
For C₁₀H₈
= 10(12) + 8(1)
= 120 + 8
= 128g/mol
Answer:
The answer is A, I think.
This one is the easiest law, but you would take 53 and 185 and add them together to get 235 and then you will minus 235 and 365 and the answer you are looking for is 130 mmHg! Hopefully this helped you!!
Metals consist of giant structure of atoms arranged in a regular pattern. The electrons in the outer shell of metal atoms are shared , and are free to move throughout the structure. Therefore the structure is formed by positive charged metal ions held together by a 'sea' of delocalised.