Answer:
Here, force=20N and displacement=10m
Work=Force×Displacement=20N×10m=200Nm
The statements that are held true with regards to the static equilibrium of bodies are:
<span>The net torque acting on the object must equal zero
</span><span>The net torque on the object does not have to be zero if the net force on the object is zero
Furthermore, when a body is in a state of static equilibrium, the summation of all forces, either vertically or horizontally, must be equal to zero. </span>
Answer:
1- t^3
2- t^2
3- t1
Explanation:
The acceleration produced in a body, while travelling in a circular motion, due to change in direction of motion is called centripetal acceleration. The formula of the centripetal acceleration is as follows:
ac = v²/r
where,
ac = centripetal acceleration
v = speed
r = radius
for a constant radius the centripetal acceleration will be directly proportional to the speed of object. The speed of pendulum will be lowest at t1 due to zero speed initially. Then the speed will increase gradually having greater speed at t^2 and the highest speed and centripetal acceleration at t^3. Therefore, the three instants in tie can be written in following order from greatest centripetal acceleration to lowest:
<u>1- t^3</u>
<u>2- t^2</u>
<u>3- t1</u>
Answer:
(a) 300 ft
(b) 60 ft/s
Explanation:
distance
where a is acceleration and t is time

Also, d=vt where v is the velocity
d=30t
Therefore
hence t=10 s
Substituting t is either formula
d=30t=30*10=300 ft
Also
v=at hence 
solution
In This question we have given ,
Charge on each ball=
force of repulsion between balls is 
Let distance between ball be x
We know by Coulombs law,
..............(1)
here,
Put values of k and charges in equation 1





therefore distance between two given charges is =.701m