Answer:
speed of golf ball is 1.15 ×
m/s
and % of uncertainty in speed = 2.07 ×
%
Explanation:
given data
mass = 45.9 gram = 0.0459 kg
speed = 200 km/hr = 55.5 m/s
uncertainty position Δx = 1 mm =
m
to find out
speed of the golf ball and % of speed of the golf ball
solution
we will apply here heisenberg uncertainty principle that is
uncertainty position ×uncertainty momentum ≥
......1
Δx × ΔPx ≥
here uncertainty momentum ΔPx = mΔVx
and uncertainty velocity = ΔVx
and h = 6.626 ×
Js
so put here all these value in equation 1
× 0.0459 × ΔVx = 
ΔVx = 1.15 ×
m/s
and
so % of uncertainty in speed = ΔV / m
% of uncertainty in speed = 1.15 ×
/ 55.5
% of uncertainty in speed = 2.07 ×
%
Answer:
red shift, indicating that the universe is expanding
Explanation:
Doppler effect occurs when a source of a wave (e.g. light, or sound waves) moves relative to an observer; as a result of this relative motion, the wavelength of the wave appears lengthened/shortened to the observer. Two situations can occur:
- The source of the wave is moving towards the observer - in this case, the wavelength of the wave becomes shorter. If the wave is visible light, such as the light emitted by distant galaxies, this means that the wavelength of the light shifts towards the blue-end of the spectrum (blue-shift)
- The source of the wave is moving away from the observer - in this case, the wavelength of the wave becomes longer. If the wave is visible light, such as the light emitted by distant galaxies, this means that the wavelength of the light shifts towards the red-end of the spectrum (red-shift)
In our universe, we observe a red-shift for all the distant galaxies: this means that these galaxies are moving away from us, so this is an indication that the universe is expanding.
Answer:

Explanation:
In order to solve this problem, we mus start by drawing a free body diagram of the given situation (See attached picture).
From the free body diagram we can now do a sum of forces in the x and y direction. Let's start with the y-direction:



so:

now we can go ahead and do a sum of forces in the x-direction:

the sum of forces in x is 0 because it's moving at a constant speed.



so now we solve for theta. We can start by factoring mg so we get:

we can divide both sides into mg so we get:

this tells us that the problem is independent of the mass of the object.

we now divide both sides of the equation into
so we get:


so we now take the inverse function of tan to get:

so now we can find our angle:

so

Explanation:
a. Average speed = distance / time
= 100 m / 70 s
= 1.43 m/s
b. Average displacement = displacement / time
= 0 m / 70 s
= 0 m/s
Distance is the length of the path traveled. Displacement is the difference between the final position and initial position.