<span>By Newton's second law of motion, we know that the resultant force acting on a body is directly proportional to the mass of the body and directly proportional to its acceleration. In system international (SI) units, the value of the constant of proportionality constant is 1. Therefore, the equation for Newton's second law of motion becomes: F = ma, where F is the resultant force, m is the mass and a is the acceleration of the object. Substituting the values of m and a into this formula, we get the result: F = 12 x 4 = 48. The SI unit for force is the Newton; therefore, <u>the answer is 48 Newtons.</u></span>
they have zero momentum before pushing off, is at least true
A I hope it helpsss youuu ;:))))
<h3>
Answer:</h3>
800 meters
<h3>
Explanation;</h3>
<u>We are given;</u>
- Speed as 40 m/s
- Time as 20 seconds
We are required to determine the distance traveled
- Speed refers to the rate of change in distance.
- It is given by;
Speed = Distance ÷ time
Rearranging the formula;
Distance = speed × time
In this case;
Distance = 40 m/s × 20 sec
= 800 meters
Thus, the distance traveled by the car is 800 m
Answer:
Explanation:
The direction of force will be in upward direction making an angle of θ with the vertical .
Reaction force R = mg - F cosθ
Friction force = μR
= .36 (mg - F cosθ )
Horizontal component of applied force
= F sinθ
For equilibrium
F sinθ = .36 (mg - F cosθ)
F sinθ + .36 F cosθ =.36 mg
F (sinθ + .36 cosθ) = .36 mg
F R( cosδsinθ +sinδ cosθ) = .36 mg ( Rcosδ = 1 . Rsinδ= .36 )
F R sin( θ+δ ) = . 36 mg
F = .36 mg / Rsin( θ+δ )
For minimum F , sin( θ+δ ) should be maximum
sin( θ+ δ ) = sin 90
θ+ δ = 90
Rsinδ / Rcosδ = .36
δ = 20⁰
θ = 70⁰ Ans