Answer:
The answer is Temperature.
Answer:
North of west
Explanation:
Given
Plane wishes to fly in west
but wind with speed 33.9 km/h towards south obstructing its path
so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west
Plane absolute speed=195 km/h
To fly towards west velocity in Y direction should be zero
thus 

so Plane should head towards
North of west in order to fly in west.
So plane
actual velocity is

Answer:
A generator turns rotary motion into electricity. It is basically the inverse of a motor. Generally a transformer changes one voltage into another based on the number of conductor windings on each side. There are two sets of windings called the “primary” and the “secondary”.
Explanation:
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
It depends on what they are