A machine can never be 100% efficient because some work is always lost
due to the lack of materials or equipment that would convert work by 100%. It follows
the second law of entropy. The ideal engine is known as Carnot’s engine having
a 100% efficiency. So far, no engine has ever gotten to 100%.
Here we can use momentum conservation as in this type of collision there is no external force on it

now here we can say




now here we can say


now by coefficient of restitution
for elastic collision we know that e = 1


now by solving the two equation


also we know that

so final speed of the nail is 6.875 m/s
<h3><u>Answers;</u></h3>
Antarctica and Greenland
Present day glaciers are found primarily in <em><u>Antarctica and Greenland</u></em>.
<h3><u>Explanation;</u></h3>
- <em><u>The two major ice sheets that exists today are found primarily in Antarctica and Greenland. Ice sheets are large masses of glacial ice that are also known as continental glaciers.</u></em>
- Most ice in Antarctica and Greenland spill out into the ocean from a few spots. The Antarctica and Greenland ice sheets combined comprise more than 99 percent of freshwater ice found on Earth.
Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus,
=
= 171.82 kJ/kg
We know COP of heat pump
COP = 
= 
= 6.076
Therefore, Work out put, W = 
= 171.82 / 6.076
= 28.27 kJ/kg
Where are the factors ... to this question