Answer:
-0.383 m
Explanation:
Diameter of cylinder = 4m therefore r = 2
height of cylinder ( H ) = 4 m
specific gravity = 0.6 ( assumed )
depth of immersion = 'h'
<u>Determine the metacentric height </u>
weight of cylinder in water = water displaced
= 0.6 * 1000 * πr^2* H = 1000 * πr^2* h
= 0.6 * 4 = h
∴ h = 2.4 m
hence the depth of center of buoyancy from free space = h /2 = 1.2 m
The metacentric height can be calculated using the formula below
Gm = Io / Vsubmerged - BG
attached below is the remaining solution
Answer:
T = 153.72 N
Explanation:
For this exercise we must use the conditions of translational and rotational equilibrium.
Let's set a frame of reference on the hinge, start by writing the rotational equilibrium relationship, suppose counterclockwise rotation is positive
We look for the components of the cable tension with trigonometry
cos 37 = Tₓ / T
sin 37 =
/ T
Tₓ = T cos 37
T_{y} = T sin 37
the expression for rotational equilibrium is
T_{y} L + Tₓ 0 - W L / 2 - W_light 0.55 = 0
where L is the length L= 1.8 m,
T_{y} = (W L/2 + W_lght 0.55) / L
T sin 37 = Mg /2 + m_light g 0.55 / L
T = (M / 2 + m_light 0.55 / L) g / sin 35
let's calculate
T = (15/2 + 4.9 0.55 / 1.8) 9.8 / sin 35
T = 153.72 N
Assuming that there is in a vacuum, the two object will cool at the same rate, because the objects are made of the same material they will have the same cooling rate, assuming the surrounding temperature is the same.
Answer:
True
Explanation:
This is true because in an energy flow, the primary producers such as plants produce their own foods by using energy from the sun. These primary producers are consumed by primary consumers such as rabbits for food, while secondary consumers such as snakes would consume the primary consumers.
By so doing, energy flows from one trophic level to the other.
Answer:
91.3 kg
Explanation:
weight = m*g
m: mass
g: gravity = 9.8 or 10 (depends on what your instructor tells you to use)
mass = w/g
895/9.8 = 91.3 KG