Answer:
b. Specific heat increases as the number of atoms per molecule increases.
c. Specific heat at constant pressure is higher than at constant volume.
d. Monatomic gases behave like ideal gases.
Explanation:
Specific heat of the gas at constant pressure is usually higher than that of the volume.
i.e.
Cp - Cv = R
where R is usually the gas constant.
However, monoatomic gases are gases that exhibit the behavior of ideal gases. This is due to the attribute of the intermolecular forces which plays a negligible role. Nonetheless, the case is not always true for all temperatures and pressure.
Similarly, the increase in the number of atoms per molecule usually brings about an increase in specific heat. This effect is true as a result of an increase in the total number associated with the degree of freedom from which energy can be separated.
Thus, from above explanation:
Option b,c,d are correct while option (a) is incorrect.
Answer:
5. Is greater than mg, always
Explanation:
If the cone has an inclination of angle β, the sum of forces will be:
x-axis (centripetal axis):
N*sin β = m*ax where ax is the centripetal acceleration
y-axis:
N*cos β - m*g = m*ay where ay is the vertical acceleration. If the block starts falling down, ay will be negative. If the block starts sliding up, ay will be positive. If the block does not move up nor down, ay=0.
Solving for N:
If ay is positive or zero, N will be greater than mg. If ay is negative, N will be less than mg.
If the block is sliding along a horizontal circular path (not up, nor down), ay = 0, so N will always be greater than mg.
Some are out but will be on Netflix June 17
Answer:
d = 3.5*10^4 m
Explanation:
In order to calculate the displacement of the airplane you need only the information about the initial position and final position of the airplane. THe initial position is at the origin (0,0,0) and the final position is given by the following vector:
The displacement of the airplane is obtained by using the general form of the Pythagoras theorem:
(1)
where x any are the coordinates of the final position of the airplane and xo and yo the coordinates of the initial position. You replace the values of all variables in the equation (1):
hence, the displacement of the airplane is 3.45*10^4 m
The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J