Answer:
a)1.51*10^-22joules b) 1.89*10^-7m
Explanation:
Work done to stop the proton = the kinetic energy of the proton = 1/2 mv^2 = 1/2* 1.67*10^-27* 425*425 = 1.51* 10 ^ -22 joules
b) net force acting to stop the proton = 8.01*10^-16
Work done needed to stop the proton = net force acting opposite the motion * distance
Distance covered = need work done/ net force
Distance = 1.51*10^-22/8.01*10^-16= 1.89*10^-7m
Answer:
The answer is
A. Pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
Explanation:
The question is incomplete, here is a complete question with full options
You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun uses a plunger which is operated by pulling back on a handle. You must squeeze the handle very hard to get the caulk to come out of the narrow opening because:_________.
A. pressure is distributed uniformly throughout the fluid and the area of the plunger is much larger than the area of the opening.
B. viscous drag between the walls of the tip and the caulk causes the caulk to swirl around chaotically.
C. Newton’s third law requires most of the energy in the caulk to be used to push back on the plunger rather than moving it through the tip.
D. the high density of the caulk impedes its flow through the small opening.
Since the caulk is thick and the exit nozzle is small, the pressure needed to deliver the caulk will be very high as pressure is uniformly distributed at the plunger side at every part of the caulk, hence very high pressure is needed to deliver the caulk which is why the handle needed the very hard squeeze
1 m/s
Explanation:
To solve this question we use the following formula:
momentum = mass × velocity
momentum of the first car = 1000 kg × 2.5 m/s
momentum of the second car = 2500 kg × X m/s
To bring the cars at rest the momentum of the first car have to be equal to the momentul of the second car.
momentum of the first car = momentum of the second car
1000 kg × 25 m/s = 2500 kg × X m/s
X (velocity of the second car) = (1000 × 25) / 2500 = 1 m/s
Learn more about:
momentum
brainly.com/question/13378780
#learnwithBrainly
Answer:
move the decimal 6 places to the left.
Explanation:
um I assume you meant to say area m^3
Answer:
The resistance in first case is 12 Ω, power delivered is 12 W, and potential difference is 0.01 V
Explanation:
Given:
(A)
Current
A
Voltage
V
For finding the resistance,



12Ω
(B)
For finding power delivered,


Watt
(C)
For finding the potential difference,



V
Therefore, the resistance in first case is 12 Ω, power delivered is 12 W, and potential difference is 0.01 V