Answer:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
Explanation:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
This is because:
If we consider the ball initially at rest on a frictionless surface and a force is exerted through the centre of mass of the ball, it will slide across the surface with no rotation, and thus, there will only be translational motion.
Now, if there is friction and force is again applied to the stationary ball, the frictional force will act in the opposite direction to the force but at the edge of the ball that rests on the ground. This friction generates a torque on the ball which starts the rotation.
Therefore, static friction is infact necessary for a ball to begin rolling.
Now, from the top of the ball, it will move at a speed 2v, while the centre of mass of the ball will move at a speed v and lastly, the bottom edge of the ball will instantaneously be at rest. So as the edge touching the ground is stationary, it experiences no friction.
So friction is necessary for a ball to start rolling but once the rolling condition has been met the ball experiences no friction.
<span>Answer:
The moments of inertia are listed on p. 223, and a uniform cylinder through its center is:
I = 1/2mr2
so
I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2
Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration:
t = Ia
-1.20 Nm = (0.0120984 kgm2)a
a = -99.19 rad/s/s
Now we have a kinematics question to solve:
wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s
w = 0
a = -99.19 rad/s/s
Let's find the time first:
w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s
t = 10.558 s = 10.6 s
And the displacement (Angular)
Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form
s = (u+v)t/2
Which is
q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s
q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians
But the problem wanted revolutions, so let's change the units:
q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>
Answer:
I = 0.2 A
Explanation:
Lamp is rated at 300 mA
I_lamp = 0.3 A
Voltage is; V = 3V
Thus; Resistance is given by;
R = V/I
R = 3/0.3
R = 10 ohms
Now, since the ammeter of 5 ohms is connected in series with the lamp. Thus equivalent resistance;
R_eq = 10 + 5
R_eq = 15 ohms
Ammeter current will be;
I = V/R_eq
I = 3/15
I = 0.2 A