The question is typed wrong. Assuming the correct question is
How many liters of 0.98 M H2SO4 solution would react completely with 3.5 moles Ca(OH)2 ?
Answer:-
3.571 litres
Explanation:-
The balanced chemical equation for this reaction is
H2SO4 + Ca(OH)2 = CaSO4 + 2 H2O
From the balanced chemical equation we see that
1 mole of Ca(OH)2 reacts with 1 mol of H2SO4.
∴3.5 moles of Ca(OH)2 reacts with 1 x 3.5 / 1 = 3.5 mol of H2SO4.
Strength of H2SO4 = 0.98 M
Volume of H2SO4 required = Number of moles of H2SO4 / Strength of H2SO4
= 3.5 moles / 0.98 M
= 3.571 litre
Answer:
The correct answer is option B.
Explanation:
Michaelis–Menten 's equation:
![v=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
v = rate of formation of products
[S] = Concatenation of substrate = ?
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= initial concentration of enzyme
We have :

[S] =?

![v=V_{max}\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![\frac{V_{max}}{4}=V_{max}\times \frac{[S]}{(0.0050 M+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7Bmax%7D%7D%7B4%7D%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%280.0050%20M%2B%5BS%5D%29%7D)
![[S]=\frac{0.005 M}{3}=1.7\times 10^{-3} M](https://tex.z-dn.net/?f=%5BS%5D%3D%5Cfrac%7B0.005%20M%7D%7B3%7D%3D1.7%5Ctimes%2010%5E%7B-3%7D%20M)
So, the correct answer is option B.
<span>Out of the possible answers for this question, fluorine in the second period is correct. Of the four elements fluorine, chlorine, bromine and iodine, fluorine has the largest first ionization energy, with a Enthalpy number of 1681.0. Of all the elements, helium has the highest first ionization energy figure.</span>
Answer: The answer is Net Forces.
Net force is the vector sum of forces acting on a particle or body.
Have a great day!