The indicated data are of clear understanding for the development of Airy's theory. In optics this phenomenon is described as an optical phenomenon in which The Light, due to its undulatory nature, tends to diffract when it passes through a circular opening.
The formula used for the radius of the Airy disk is given by,

Where,
Range of the radius
wavelength
f= focal length
Our values are given by,
State 1:



State 2:



Replacing in the first equation we have:


And also for,


Therefor, the airy disk radius ranges from
to 
Explanation:
It is given that,
Mass of the woman, m₁ = 52 kg
Angular velocity, 
Mass of disk, m₂ = 118 kg
Radius of the disk, r = 3.9 m
The moment of inertia of woman which is standing at the rim of a large disk is :


I₁ = 790.92 kg-m²
The moment of inertia of of the disk about an axis through its center is given by :


I₂ =897.39 kg-m²
Total moment of inertia of the system is given by :


I = 1688.31 kg-m²
The angular momentum of the system is :



So, the total angular momentum of the system is 4980.5 kg-m²/s. Hence, this is the required solution.
Answer:
α = 1930.2 rad/s²
Explanation:
The angular acceleration can be found by using the third equation of motion:

where,
α = angular acceleration = ?
θ = angular displacement = (1500 rev)(2π rad/1 rev) = 9424.78 rad
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (960 rev/s)(2π rad/1 rev) = 6031.87 rad/s
Therefore,

<u>α = - 1930.2 rad/s²</u>
<u>negative sign shows deceleration</u>
Answer:
78.4 m
Explanation:
To obtain the height of the cliff;
We can use the Relation to obtain the final velocity, v
v = u + at
a = acceleration due to gravity = 9.8m/s²
v = 0 + (9.8*4)
v = 0 + 39.2
v = 39.2 m/s
To obtain the Height, S
v² = u² + 2aS
39.2^2 = 0 + 2(9.8)S
39.2^2 = 0 + 19.6S
1536.64 = 19.6S
S = 1536.64 / 19.6
S = 78.4 m
Now the vertical velocity of the ball thrown at an angle 10° is given as
Voy(initial vertical velocity)= 30m/s x sin 10
Voy(initial vertical velocity)= 5.2m/s
Now the ball is decelerating with an acceleration due to gravity equivalent to 9.8m/s^2.
Let Vy be the final velocity and that is equal to zero in this case.
Now
Vy= Voy- tx9.8
Where t is the time at which the vertical velocity becomes 0.
Substituting the values we get
0= 5.2-tx9.8
9.8t=5.2
t=0.53 secs