I don't know for sure but i think that it is because the force him pushing her pushed him back as well
Hope i helped
To solve this problem, we know that:
1 Albert = 88 meters
1 A = 88 m
The first thing we have to do is to square both sides of
the equation:
(1 A)^2 = (88 m)^2
1 A^2 = 7,744 m^2
<span>Since it is given that 1 acre = 4,050 m^2, so to reach
that value, 1st let us divide both sides by 7,744:</span>
1 A^2 / 7,744 = 7,744 m^2 / 7,744
(1 / 7,744) A^2 = 1 m^2
Then we multiply both sides by 4,050.
(4050 / 7744) A^2 = 4050 m^2
0.523 A^2 = 4050 m^2
<span>Therefore 1 acre is equivalent to about 0.52 square
alberts.</span>
Answer:
Acceleration = 0.0282 m/s^2
Distance = 13.98 * 10^12 m
Explanation:
we will apply the energy theorem
work done = ΔK.E ( change in Kinetic energy ) ---- ( 1 )
<em>where :</em>
work done = p * t
= 15 * 10^6 watts * ( 1 year ) = 473040000 * 10^6 J
( note : convert 1 year to seconds )
and ΔK.E = 1/2 mVf^2 given ; m = 1200 kg and initial V = 0
<u>back to equation 1 </u>
473040000 * 10^6 = 1/2 mv^2
Vf^2 = 2(473040000 * 10^6 ) / 1200
∴ Vf = 887918.92 m/s
<u>i) Determine how fast the rocket is ( acceleration of the rocket )</u>
a = Vf / t
= 887918.92 / ( 1 year )
= 0.0282 m/s^2
<u>ii) determine distance travelled by rocket </u>
Vf^2 - Vi^2 = 2as
Vi = 0
hence ; Vf^2 = 2as
s ( distance ) = Vf^2 / ( 2a )
= ( 887918.92 )^2 / ( 2 * 0.0282 )
= 13.98 * 10^12 m
The answer should be B. According to the conservation of energy, the energy cannot be created nor destroyed, but it can be transformed. Since the object is moving down, that means its height is decreasing, causing the potential energy decreasing and the kinetic energy increasing to fulfill the conservation law.
Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>