Maggie is trying to find out if the amount of sugar in a liquid affects the amount of time it takes to freeze
A good hypothesis is: The more sugar in the drink the longer it takes to freeze
Conclusion= she concludes that her hypothesis is correct as the unsweetened tea froze the fastest while the root beer took the longest time as it contained the most sugar
Answer:
Explanation:
His Kinetic energy = 1/2 m v^2
v = 5 m/s
m = 75 kg
Ke = 1/2 75 * 5^2
Ke = 937.5 Joules
This will be converted to PE when he reaches the maximum height he reaches. In other words KE = PE
PE = m * g * h
m = 75
g = 9.81
h = ?
PE = 937.5
937.5 = 75 * 9.81 * h
937.5 = 735.75 * h
937.5/735.75 = h
h= 1.27 meters
Answer:
The motion of the ball relative to the ground is stationary
The motion of the ball relative to the wagon is backwards
Explanation:
To describe the motion of the ball relative to the ground, we note that
Assuming the ball is perfectly round and rotate freely, then we have
Force on the ball due to motion of the wagon = 0 N,
Then by the law of motion, an object will remain at rest when no force is applied to it
Therefore, apart from rotation of the ball, it will remain no displacement relative to the ground.
The motion of the ball relative to the wagon
Relative to the wagon, the ball appears to be moving in the opposite direction to the wagon, that is backwards.
Answer:
The wave is traveling in the +x direction.
Explanation:
The equation of a wave is given by the formula as :

Here,
A is the amplitude of wave
is the phase of wave
is the angular frequency of the wave
We need to find the correct statement out of given options. The given equation can be rewritten as :

Here, the propagation constant is negative. So, the wave is moving in +x direction. Hence, the correct option is (a).
Many devices have been invented to accurately measure temperature. It all started with the establishment of a temperature scale. This scale transformed the measurement of temperature into meaningful numbers.
In the early years of the eighteenth century, Gabriel Fahrenheit (1686-1736) created the Fahrenheit scale. He set the freezing point of water at 32 degrees and the boiling point at 212 degrees. These two points formed the anchors for his scale.
Later in that century, around 1743, Anders Celsius (1701-1744) invented the Celsius scale. Using the same anchor points, he determined the freezing temperature for water to be 0 degree and the boiling temperature 100 degrees. The Celsius scale is known as a Universal System Unit. It is used throughout science and in most countries.
There is a limit to how cold something can be. The Kelvin scale is designed to go to zero at this minimum temperature. The relationships between the different temperature scales are:
oK = 273.15 + oC oC = (5/9)*(oF-32) oF = (9/5)*oC+32
oF oC oK
Water boils 212 100 373
Room Temperature 72 23 296
Water Freezes 32 0 273
Absolute Zero -460 -273 0
At a temperature of Absolute Zero there is no motion and no heat. Absolute zero is where all atomic and molecular motion stops and is the lowest temperature possible. Absolute Zero occurs at 0 degrees Kelvin or -273.15 degrees Celsius or at -460 degrees Fahrenheit. All objects emit thermal energy or heat unless they have a temperature of absolute zero.
If we want to understand what temperature means on the molecular level, we should remember that temperature is the average energy of the molecules that composes a substance. The atoms and molecules in a substance do not always travel at the same speed. This means that there is a range of energy (the energy of motion) among the molecules. In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. Sometimes these molecules collide with each other. When this happens the higher speed molecule transfers some of its energy to the slower molecule causing the slower molecule to speed up and the faster molecule to slow down. If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced. So, higher temperatures mean a substance has higher average molecular motion. We do not feel or detect a bunch of different temperatures for each molecule which has a different speed. What we measure as the temperature is always related to the average speed of the molecules in a system