-3n<_15
the "<_" is a "less than or equal to" sign i just couldn't type it how it looks
The independent is a sentence that can stand alone a dependent isn't
Answer:
2/4 3/6
Step-by-step explanation:
any fraction where the numerator is half of the Denominator
Answer:
0.9586
Step-by-step explanation:
From the information given:
7 children out of every 1000 children suffer from DIPG
A screening test designed contains 98% sensitivity & 84% specificity.
Now, from above:
The probability that the children have DIPG is:
![\mathbf{P(positive) = P(positive \ | \ DIPG) \times P(DIPG) + P(positive \ | \ not \DIPG)\times P(not \ DIPG)}](https://tex.z-dn.net/?f=%5Cmathbf%7BP%28positive%29%20%3D%20P%28positive%20%5C%20%20%7C%20%20%5C%20DIPG%29%20%5Ctimes%20P%28DIPG%29%20%2B%20P%28positive%20%20%5C%20%7C%20%5C%20%20not%20%5CDIPG%29%5Ctimes%20P%28not%20%20%5C%20DIPG%29%7D)
![= 0.98\imes( \dfrac{7}{1000}) + (1-0.84) \times (1 - \dfrac{7}{1000})](https://tex.z-dn.net/?f=%3D%200.98%5Cimes%28%20%5Cdfrac%7B7%7D%7B1000%7D%29%20%2B%20%281-0.84%29%20%5Ctimes%20%281%20-%20%5Cdfrac%7B7%7D%7B1000%7D%29)
= (0.98 × 0.007) + 0.16( 1 - 0.007)
= 0.16574
So, the probability of not having DIPG now is:
![P(not \ DIPG \ | \ positive) = \dfrac{ P(positive \ | \ not DIPG)\timesP(not \ DIPG)} { P(positive)}](https://tex.z-dn.net/?f=P%28not%20%5C%20DIPG%20%5C%20%20%7C%20%20%5C%20positive%29%20%3D%20%5Cdfrac%7B%20P%28positive%20%20%5C%20%7C%20%5C%20%20not%20DIPG%29%5CtimesP%28not%20%5C%20%20DIPG%29%7D%20%7B%20P%28positive%29%7D)
![=\dfrac{ (1-0.84)\times (1 - \dfrac{7}{1000}) }{ 0.16574}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%20%281-0.84%29%5Ctimes%20%281%20-%20%5Cdfrac%7B7%7D%7B1000%7D%29%20%7D%7B%200.16574%7D)
![=\dfrac{ 0.16 ( 1 - 0.007) }{0.16574}](https://tex.z-dn.net/?f=%3D%5Cdfrac%7B%200.16%20%28%201%20-%200.007%29%20%7D%7B0.16574%7D)
= 0.9586
Answer: 100 x
Step-by-step explanation:.