Answer:
- 2x² + 2x + 11
Step-by-step explanation:
Given
x² + 6 - (3x² - 2x - 5) ← distribute parenthesis by - 1
= x² + 6 - 3x² + 2x + 5 ← collect like terms
= - 2x² + 2x + 11
Numbers starting with a 1 and followed by only 0s (such 10, 100, 1,000,10,000, and so forth) are called powers of ten, and they're easy to represent as "exponents". Powers of ten are the result of multiplying 10 times itself any number of times.
Answer:
The answer is B
Step-by-step explanation:
Because A is incorrect because the -8.9 is in absolute value which mean it will be an 8.9 which is greater than 5.6
C is Incorrect because - 5.6 is not greater than the absolute value of -8.9 which is 8.9, as you can see is greater than -5.6
D is incorrect because the absolute value of 5.6 is still 5.6 and the absolute value of - 8.9 is 8.9 which is greater that 5.6
<h2>
<em><u>B</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>correct</u></em><em><u> </u></em><em><u>because</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>absolute</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>-5.6</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>5.6</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>makes</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>less</u></em><em><u> </u></em><em><u>than</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>absolute</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>-8.9</u></em><em><u> </u></em><em><u>because</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>absolute</u></em><em><u> </u></em><em><u>value</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>8.9</u></em><em><u> </u></em><em><u>which</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>greater</u></em><em><u> </u></em><em><u>than</u></em><em><u> </u></em><em><u>5.6</u></em><em><u> </u></em><em><u>.</u></em></h2>
I dont understand your question.......