Answer:
<em>Written in Python</em>
def SumN(n):
total = 0
for i in range(1,n+1):
total = total + i
print("Total: ",total)
def SumNCubes(n):
total = 0
for i in range(1,n+1):
total = total + i**3
print("Cube: ",total)
n = int(input("User Input: "))
if n > 0:
SumN(n)
SumNCubes(n)
Explanation:
The SumN function is defined here
def SumN(n):
This line initializes the total to 0
total = 0
The following iteration compute the required sum
<em> for i in range(1,n+1):
</em>
<em> total = total + i
</em>
This line outputs the calculated sum
print("Total: ",total)
The SumNCubes function is defined here
def SumNCubes(n):
This line initializes the total to 0
total = 0
The following iteration compute the required sum of cubes
<em> for i in range(1,n+1):
</em>
<em> total = total + i**3
</em>
This line outputs the calculated sum of cubes
print("Cube: ",total)
The main starts here; The first line prompts user for input
n = int(input("User Input: "))
The next line checks if input is greater than 0; If yes, the two defined functions are called
if n > 0:
SumN(n)
SumNCubes(n)
Answer:
h = 6.35 W/m².k
Explanation:
In order to solve this problem, we will use energy balance, taking the thin hot plate as a system. According to energy balance, the rate of heat transfer to surrounding through convection must be equal to the energy stored in the plate:
Rate of Heat Transfer Through Convection = Energy Stored in Plate
- h A (Ts - T₀) = m C dT/dt
where,
h = convection heat transfer coefficient = ?
A = Surface area of plate through which heat transfer takes place = 2 x 0.3 m x 0.3 m (2 is multiplied for two sides of thin plate) = 0.18 m²
Ts = Surface Temperature of hot thin plate = 225⁰C
T₀ = Ambient Temperature = 25°C
m = mass of plate = 3.75 kg
C = Specific Heat = 2770 J/kg. k
dT/dt = rate of change in plate temperature = - 0.022 K/s
Therefore,
- h (0.18 m²)(225 - 25) k = (3.75 kg)(2770 J/kg.k)(- 0.022 k/s)
h = (- 228.525 W)/(- 36 m².k)
<u>h = 6.35 W/m².k</u>
Answer:
Engineering careers. If you want to stay in engineering, your job opportunities are very much linked to your degree type, and you probably know what many of them are already. ...
Consulting. ...
Technical writing. ...
Business. ...
Investment banking. ...
Law. ...
Manufacturing and production. ...
Logistics and supply chain.
Explanation: