Answer:
The correct option is;
c. the exergy of the tank can be anything between zero to P₀·V
Explanation:
The given parameters are;
The volume of the tank = V
The pressure in the tank = 0 Pascal
The pressure of the surrounding = P₀
The temperature of the surrounding = T₀
Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change
The exergy balance equation is given as follows;
![X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}](https://tex.z-dn.net/?f=X_2%20-%20X_1%20%3D%20%5Cint%5Climits%5E2_1%20%7B%7D%20%5C%2C%20%5Cdelta%20Q%20%5Cleft%20%281%20-%20%5Cdfrac%7BT_0%7D%7BT%7D%20%5Cright%20%29%20-%20%5BW%20-%20P_0%20%5Ccdot%20%28V_2%20-%20V_1%29%5D-%20X_%7Bdestroyed%7D)
Where;
X₂ - X₁ is the difference between the two exergies
Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system
Therefore, the exergy of the tank can be anything between zero to P₀·V.
Answer:
Distributes a floor load or weight
Explanation:
Answer:
8 mm
Explanation:
Given:
Diameter, D = 800 mm
Pressure, P = 2 N/mm²
Permissible tensile stress, σ = 100 N/mm²
Now,
for the pipes, we have the relation as:
where, t is the thickness
on substituting the respective values, we get
or
t = 8 mm
Hence, the minimum thickness of pipe is 8 mm
Answer:
the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL
Explanation:
Given that;
volume of cut = 25,100 m³
Volume of dry soil fill = 23,300 m³
Weight of the soil will be;
⇒ 93% × 18.3 kN/m³ × 23,300 m³
= 0.93 × 426390 kN 3
= 396,542.7 kN
Optimum moisture content = 12.9 %
Required amount of moisture = (12.9 - 8.3)% = 4.6 %
So,
Weight of water required = 4.6% × 396,542.7 = 18241 kN
Volume of water required = 18241 / 9.81 = 1859 m³
Volume of water required = 1859 kL
Therefore, the volume of water that will be required to bring these soils to the optimum moisture content is 1859 kL