1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavel [41]
3 years ago
9

Which equation is used to determine the density of a substance?

Physics
2 answers:
iren [92.7K]3 years ago
8 0

Answer:

D=M/V

Explanation:

TOOK THT ETST

Mademuasel [1]3 years ago
3 0
The answer is D=M/V hope it helps!!
You might be interested in
A ______ is something that can be placed between the sun and the subject to diffuse the light. *
Gekata [30.6K]

Answer:

scrim

Explanation:

A scrim is something that can be placed between the sun and the subject to diffuse the light.

An instance of a diffuser is a softbox that is put on its front side around a strobe containing diffusion content. The sun is a form of hard light that is often diffused through a scrim. The light rays are dispersed by putting a scrim between the sun and the object, and the harsh sun's rays is gentler.

6 0
3 years ago
Read 2 more answers
An electron with charge −e and mass m moves in a circular orbit of radius r around a nucleus of charge Ze, where Z is the atomic
shepuryov [24]

Answer:

v=\sqrt{\frac{kZe^2}{mr}}

Explanation:

The electrostatic attraction between the nucleus and the electron is given by:

F=k\frac{(e)(Ze)}{r^2}=k\frac{Ze^2}{r^2} (1)

where

k is the Coulomb's constant

Ze is the charge of the nucleus

e is the charge of the electron

r is the distance between the electron and the nucleus

This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:

F=m\frac{v^2}{r} (2)

where

m is the mass of the electron

v is the speed of the electron

Combining the two equations (1) and (2), we find

k\frac{Ze^2}{r^2}=m\frac{v^2}{r}

And solving for v, we find an expression for the speed of the electron:

v=\sqrt{\frac{kZe^2}{mr}}

6 0
3 years ago
At an altitude of 5000 m the rocket's acceleration has increased to 6.9 m/s2 . What mass of fuel has it burned?
sergey [27]

1) Initial upward acceleration: 6.0 m/s^2

2) Mass of burned fuel: 0.10\cdot 10^4 kg

Explanation:

1)

There are two forces acting on the rocket at the beginning:

- The force of gravity, of magnitude F_g = mg, in the downward direction, where

m=1.9\cdot 10^4 kg is the rocket's mass

g=9.8 m/s^2 is the acceleration of gravity

- The thrust of the motor, T, in the upward direction, of magnitude

T=3.0\cdot 10^5 N

According to Newton's second law of motion, the net force on the rocket must be equal to the product between its mass and its acceleration, so we can write:

T-mg=ma (1)

where a is the acceleration of the rocket.

Solving for a, we find the initial acceleration:

a=\frac{T-mg}{m}=\frac{3.0\cdot 10^5-(1.9\cdot 10^4)(9.8)}{1.9\cdot 10^4}=6.0 m/s^2

2)

When the rocket reaches an altitude of 5000 m, its acceleration has increased to

a'=6.9 m/s^2

The reason for this increase is that the mass of the rocket has decreased, because the rocket has burned some fuel.

We can therefore rewrite eq.(1) as

T-m'g=m'a'

where

m' is the new mass of the rocket

Re-arranging the equation and solving for m', we find

m'=\frac{T}{g+a}=\frac{3.0\cdot 10^5}{9.8+6.9}=1.8\cdot 10^4 kg

And since the initial mass of the rocket was

m=1.9 \cdot 10^4 kg

This means that the mass of fuel burned is

\Delta m = m-m'=1.9\cdot 10^4 - 1.80\cdot 10^4 = 0.10\cdot 10^4 kg

3 0
3 years ago
10.
myrzilka [38]

Answer:

<em>The new period of oscillation is D) 3.0 T</em>

Explanation:

<u>Simple Pendulum</u>

A simple pendulum is a mechanical arrangement that describes periodic motion. The simple pendulum is made of a small bob of mass 'm' suspended by a thin inextensible string.

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

Where L is its length and g is the local acceleration of gravity.

If the length of the pendulum was increased to 9 times (L'=9L), the new period of oscillation will be:

T'=2\pi \sqrt{\frac{L'}{g}}

T'=2\pi \sqrt{\frac{9L}{g}}

Taking out the square root of 9 (3):

T'=3*2\pi \sqrt{\frac{L}{g}}

Substituting the original T:

T'=3*T

The new period of oscillation is D) 3.0 T

4 0
2 years ago
How do I convert 14.8 cm into MEters?
stellarik [79]
Multiply it by a fraction equal to ' 1 ', like this:

(14.8 cm) x (1 meter/100 cm) = 14.8/100 = 0.148 meter
6 0
3 years ago
Read 2 more answers
Other questions:
  • Type a nerve fibers in humans can conduct nerve impulses at speeds up to 140 m/s. (a) how fast are the nerve impulses in miles p
    9·1 answer
  • Two Earth satellites, A and B, each of mass m, are to be launched into circular orbits about Earth’s center. Satellite A is to o
    9·1 answer
  • In a semiclassical model of the hydrogen atom, the electron orbits the proton at a distance of 0.053 nm. Part A What is the elec
    12·1 answer
  • List the number of atoms for each element in this compound: \(CaCO_{3} \)
    8·1 answer
  • A hollow metal sphere has 7 cm and 11 cm inner and outer radii, respectively. The surface charge density on the inside surface i
    15·1 answer
  • A wire carries a 11.3-mA current along the +x-axis through a magnetic field = (16.2 + 2.4 ĵ) T. If the wire experiences a force
    8·1 answer
  • Use a variation model to solve for the unknown value. Use as the constant of variation. The stopping distance of a car is direct
    8·1 answer
  • What is the direction of the sum of these two vectors? ​
    14·2 answers
  • What is the difference between reproducibility and repeatability​
    11·1 answer
  • When a cyclist moves downhill without pedalling, what type of energy does he gain?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!