Explanation:
the vehicles displacement, since displacement deals with position
Complete question:
Two parallel 3.0-meter long wires conduct current. The current in the top wire is 12.5 A and flows to the right. The top wire feels a repulsive force of 2.4 x 10^-4 N created by the interaction of the 12.5 A current and the magnetic field created by the bottom current (I). Find the magnitude and direction of the bottom current, if the distance between the two wires is 40cm.
Answer:
The bottom current is 12.8 A to the right.
Explanation:
Given;
length of the wires, L = 3.0 m
current in the top wire, I₁ = 12.5 A
repulsive force between the two wires, F = 2.4 x 10⁻⁴ N
distance between the two wires, r = 40 cm = 0.4 m
The repulsive force between the two wires is given by;

Where;
I₂ is the bottom current
The direction of the bottom current must be in the same direction as the top current since the force between the two wires is repulsive.

Therefore, the bottom current is 12.8 A to the right.
Answer: Only neurons will appear in the nervous system
the area bounded by the line and the axes of a velocity-time graph is equal to the displacement of an object during that particular time period
Thank you
Answer:
The velocity of the photo electron is
.
Explanation:
Given that,
Supplied energy, 
Minimum energy of the electron to escape from the metal, 
We need to find the velocity of the photo electron. The energy supplied by the photon is equal to the sum of minimum escape energy and the kinetic energy of the escaping electron. So,

The formula of kinetic energy is given by :

So, the velocity of the photo electron is
.