Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is
To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
Explanation:
Hello,
In this case, given the described concept regarding the Avogadro's number, we can easily notice that 27.0 g of aluminium foil has 6.022x10²³ atoms as shown below based on the mass-mole-particles relationship:
Notice this is backed up by the fact that aluminium molar mass if 27.0 g/mol.
Best regards.
FeSO₄*7H₂O(s) = FeSO₄(s) + 7H₂O(g)
M(FeSO₄*7H₂O)=278.0 g/mol
M(FeSO₄)=151.9 g/mol
m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)=m(FeSO₄)/M(FeSO₄)
m(FeSO₄)=M(FeSO₄)m(FeSO₄*7H₂O)/M(FeSO₄*7H₂O)
m(FeSO₄)=151.9*100.0/278.0=54.6 g
m(FeSO₄)=54.6 g
Answer:- C. Hafnium.
Solution:- Mass of the sample is 46.0 g and it's volume is .
From mass and volume, we can calculate it's density using the formula:
On the basis of the density, this substance could either be mercury or hafnium. Since the substance is a solid at room temperature where as mercury is liquid. So, it can't be mercury.
The right choice is C) Hafnium.