Answer:
C. Boiling water
Explanation:
Boiling water is a physical change only; the H20 molecules are moving from a liquid state to a gas state and not turning into a new substance.
Answer:- 29.6 moles of carbon.
Solution:- We have been given with 3.7 moles of
and asked to calculate the moles of C.
Looking at the formula of the compound, there are 8 carbons in it means 1 mol of he compound has 8 moles of C. So, if we multiply the given moles of the compound by 8 then we get the moles of C.

= 29.6 mol C
Hence. there are 29.6 moles of C in 3.7 moles of
.
Answer:
The correct answer is d.hydrogen peroxide H₂O₂H₂O₂
Explanation:
Substances can be found in nature in different <em>aggregation states. </em>
Agreggation states can be liquid, gas or solid.
The problem asks about which substance can be found in room temperature as <em>liquid.</em> Each subtances has different physical and chemical properties that determines in which state you can find them at room temperature.
Hydrogen peroxide is the only substance listed that is in liquid state at room temperature, all other substances are in gas state at room temperature.
Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Answer:

Explanation:
Hello!
In this case, since the percent water is computed by dividing the amount of water by the total mass of the hydrate; we infer we first need the molar mass of water and that of the hydrate as shown below:

Thus, the percent water is:

So we plug in to obtain:

Best regards!