Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.
In a series circuit, all of the components are connected in the same 'loop' and the current only has one direction/path it can flow through.
In the first three options, the current has multiple paths it can go through. So these three circuits are parallel and not series.
In the last option, the current only has one path where it can flow through, so that circuit is in series.
So Circuit <u>D </u>is a series circuit.
----------------------------------------
Answer
Circuit D
Answer:
Explanation:
a) KE = (1/2) * m * (
) = F * d = 14m * 200N = 2800 m/N or 2.8 *
m/N
b) 0J and 0m/s (if Marcella stopped after going 14 meters)
c) Known from part (a) that KE = 2800 J = F1 * d1,
2800J = F1 * (14m - 1m) => F1 = 2800J/13m = 215.384 N
Answer:
a. 0.000002 m
b. 0.00000182 m
Explanation:
36 cm = 0.36 m
15 cm = 0.15 m
a) We can start by calculating the air-water pressure of the bucket submerged 20m below the water surface:

Suppose air is ideal gas, then if the temperature stays the same, the product of its pressure and volume stays the same

Where P1 = 1.105 Pa is the atmospheric pressure, V_1 is the air volume in the bucket on the suface:

As the pressure increases, the air inside the bucket shrinks. But the crossection area stays constant, so only h, the height of air, decreases:


b) If the temperatures changes, we can still reuse the ideal gas equation above:


According to the right-hand thumb rule, the forefinger gives the velocity of charge, the thumb gives the magnetic force and the center finger gives the direction of magnetic field.
then, as shown in the picture, the <span>direction of the magnetic force on the charge is in the right direction.</span>