Answer:
To your left
Explanation:
The direction of the force exerted on charged particle due to a magnetic field is given by the right-hand-rule, where:
- The index finger indicates the direction of motion of the electron
- the middle finger gives the direction of the magnetic field
- the thumb gives the direction of the force if the particle is positively charged - otherwise, the direction is reversed
in this case, we have an electron (so, a negatively charged particle):
- The direction of motion (index finger) is horizontal, toward you
- The electron begins to curve upward as it enters the field, so this means that the force exerted on the electrons is upward --> the thumb must point downward (because the electron is negatively charged)
- The index finger gives us the direction of the magnetic field: therefore, to your left.
Answer:
Most exceptions to the trend of decreasing radius moving to the right within a period occur in the d-block.
Explanation:
- In a period as we advance from left to right, the number of valence electrons in the same shell increases due to which the effective nuclear charge increases and thus the atomic size decreases.
- In d-block atomic radius initially decreases then remains constant and increases towards the end.
- As one moves from Sc (scandium) to Zn (zinc), the effective nuclear charge increases by a factor of 1, this is because:
- The number of electrons are low in the inner shell.
- The shielding power of d-orbital is low.
- Inter electronic repulsions will be operating at a value less than the nuclear charge, which will result in decrease in atomic radii.
- As the number of electrons in the inner orbital increases the outer electrons repel one another which enables them to push away.
- Although d-orbital has less shielding power, the number of electrons present in it are high. Hence, the electron-electron repulsive force becomes dominant, this results in an increase in the atomic radii.
Therefore, most exceptions to the trend of decreasing radius moving to the right within a period occur in the d-block.
Learn more about the periodic table here:
<u>brainly.com/question/9238898</u>
#SPJ4
Answer
hawk maintains a consistent internal temperature in both the heat of the day and the cool of night this is called as endothermy.
Endothermy also known as warm-bloodedness is defined as the ability of an animal, bird or organism to produce heat and conserve it to maintain a consistent internal temperature.
Answer:
T = 29.6 N
Explanation:
length of the rope is
L = 18 m
mass of the rope is
m = 12 kg
now we have
mass per unit length of the rope is given as
[te]\lambda = \frac{12 kg}{18 m}[/tex]
now time taken by wave to reach from end to other



now we have


so we will have
