The study of how the world works
The acceleration of gravity on or near the surface of the Earth is 9.8 m/s².
Anything acted on only by gravity loses 9.8 m/s of upward speed, or gains
9.8 m/s of downward speed, every second.
Leaping straight upward at 1.8 m/s, Tina keeps rising until she runs out of
upward speed. That happens in (1.8/9.8) = 0.1837 second after the leap.
After that, Finkel's First Law of Motion takes over:
"What goes up must come down."
The dropping part of the leap is symmetrical with the first. Please don't
make me go through proving it. Tina hits the floor at the same speed of
1.8 m/s with which she left it, and it takes the same amount of time to drop
from the peak to the floor as it took to rise from the floor to the peak.
So her total time out of contact with the floor is
2 x (0.1837 sec) = 0.367 second (rounded)
Answer:
See solution with all the conditions considered. A gaseous mixture of A and B for which species A is chemically consumed at the catalytic surface.
The total pore reaction rate is stated below and it can be inferred by applying the bellow analogy.
Answer:
the principle of original horizontality and the principle of superposition
Explanation:
The <em>principle of horizontality</em> states that layers of sediment are originally deposited horizontally under the influence of gravity.
The <em>principle of superposition</em> states that the oldest layer layer is at the bottom and each layer above it is younger, with the youngest being at the top.
Unconformities help us find the age of different layers. An unconformity is a surface in which no new solid matter is deposited after a long geologic interval. <em>Angular unconformity </em>is a type of unconformity which different kinds of stratum were tilted or folded before deposition of younger layers of solid matter above the unconformity. Once the layers were folded and tilted, the older layers of the solid matter eroded, then the younger layers were deposited on the older layers. There <em>angular unconformity </em>is the contact between young and old layers of solid matter.
Therefore, these two principles therefore describe how the tilted layers are older than horizontal layers.