Work is done when a motion resulted from the force being done by an object. The amount of work done is calculated by multiplying the force applied and the distance traveled. It is calculated as follows:
Work = Force x distance = 280 N x 5 m = 1400 J.
Answer:
x = 1.26 sin 3.16 t
Explanation:
Assume that the general equation of the displacement given as
x = A sinω t
A=Amplitude ,t=time ,ω=natural frequency
We know that speed V

V= A ω cosωt
Maximum velocity
V(max)= Aω
Given that F= 32 N
F = K Δ
K=Spring constant
Δ = 0.4 m
32 =0.4 K
K = 80 N/m
We know that ω²m = K
8 ω² = 80
ω = 3.16 s⁻¹
Given that V(max)= Aω = 4 m/s
3.16 A = 4
A= 1.26 m
Therefore the general equation of displacement
x = 1.26 sin 3.16 t
Answer: 6m/s
Explanation:
Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.
After collision, the two objects will move at the same velocity (v).
Let mA and mB be the mass of the two objects
uA and uB be their velocities before collision.
v be their velocity after collision
Since the two objects has the same mass, mA= mB= m
Also since object A is at rest, its velocity = 0m/s
Velocity of object B = 12m/s
Mathematically,
mAuA + mBuB = (mA+mB )v
m(0) + m(12) = (m+m)v
0+12m = (2m)v
12m = 2mv
12 = 2v
v = 6m/s
Therefore the speed of the composite body (A B) after the collision is 6m/s
The ball took half of the total time ... 4 seconds ... to reach its highest
point, where it began to fall back down to the point of release.
At its highest point, its velocity changed from upward to downward.
At that instant, its velocity was zero.
The acceleration of gravity is 9.8 m/s². That means that an object that's
acted on only by gravity gains 9.8 m/s of downward speed every second.
-- If the object is falling downward, it moves 9.8 m/s faster every second.
-- If the object is tossed upward, it moves 9.8 m/s slower every second.
The ball took 4 seconds to lose all of its upward speed. So it must have
been thrown upward at (4 x 9.8 m/s) = 39.2 m/s .
(That's about 87.7 mph straight up. Somebody had an amazing pitching arm.)
Answer:
E = 2.7 x 10¹⁶ J
Explanation:
The release of energy associated with the mass can be calculated by Einstein's mass-energy relation, as follows:

where,
E = Energy Released = ?
m = mass of material reduced = 0.3 kg
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>E = 2.7 x 10¹⁶ J</u>