Answer:
Time = t = 6.62 s
Explanation:
Given data:
Height = h = 215 m
Initial velocity =
= 0 m/s
gravitational acceleration = g = 9.8 m/s²
Time = t = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero.

t² = 
t =
t = 
t = 6.62 s
Complete question is;
An experiment is carried out to measure the extension of a rubber band for different loads.
The results are shown in the image attached.
What figure is missing from the table?
Answer:
17.3 cm
Explanation:
The image attached showed values for load, extension and initial length.
Now, the first length there is 15.2 cm and as such it's corresponding extension is 0 because it has no preceding measured length.
The second measured length is 16.2 cm. Since it's initial measured length is 15.2 cm, then the extension has a formula; final length - initial length.
This gives: 16.2 - 15.2 = 1 cm
This corresponds to what is given in the table.
For the next measured length, it is blank but we are given the extension to be 2.1 cm. Now, since the initial measured length is 15.2 cm.
Thus;
2.1 cm = Final length - 15.2 cm
Final length = 15.2 + 2.1
Final length = 17.3 cm
Answer:

Explanation:
As per mechanical energy conservation we can say that here since friction is present in the barrel so we will have
Work done by friction force = Loss in mechanical energy
so we will have

here we know that



Initial compression in the spring is given as



now from above equation




Answer:
Bicycle
Explanation:
A compound machine is a machine which is a combination of simple machines.
Simple machines are like the pulley, inclined plane or a screw.
Suppose a bicycle is considered, it has more than one simple machine combined together, for it to work. Wheel and axle is one of them and the beam which is pivoted at a fixed hinge is another simple machine in it.
The pedals of the bicycle function as the lever.