Answer:
Maximum altitude above the ground = 1,540,224 m = 1540.2 km
Explanation:
Using the equations of motion
u = initial velocity of the projectile = 5.5 km/s = 5500 m/s
v = final velocity of the projectile at maximum height reached = 0 m/s
g = acceleration due to gravity = (GM/R²) (from the gravitational law)
g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)
g = -9.82 m/s² (minus because of the direction in which it is directed)
y = vertical distance covered by the projectile = ?
v² = u² + 2gy
0² = 5500² + 2(-9.82)(y)
19.64y = 5500²
y = 1,540,224 m = 1540.2 km
Hope this Helps!!!
Answer: the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Explanation:
Given that;
mass of vehicle m = 1000 kg
for a low speed test; V = 2.5 m/s
bumper maximum deflection = 4 cm = 0.04 m
First we determine the energy of the vehicle just prior to impact;
W_v = 1/2mv²
we substitute
W_v = 1/2 × 1000 × (2.5)²
W_v = 3125 J
now, the the effective design stiffness k will be:
at the impact point, energy of the vehicle converts to elastic potential energy of the bumper;
hence;
W_v = 1/2kx²
we substitute
3125 = 1/2 × k (0.04)²
3125 = 0.0008k
k = 3125 / 0.0008
k = 3906250 N/m
Therefore, the effective design stiffness required to limit the bumper maximum deflection during impact to 4 cm is 3906250 N/m
Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:

Mechanical energy is the sum of kinetic energy and potential energy