Answer:
A magnet is used in a compass to show the direction.
Magnets are used in medical equipment.
Powerful magnets are used to lift objects
they are used in refrigerator, televisions, earphones etc
Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
A nitrogen laser generates a pulse containing 10.0 mj of energy at a wavelength of 340.0 nm and has 1785 x 10¹⁹ photons in the pulse.
<h3>How many photons are in the pulse?</h3>
Energy of a single photon is
E=hcλ
E=6.626×10⁻³⁴ J s×3×108 m/s /340×10⁻⁹ m
E=6.31×10⁻¹⁹ J
Number of photons in the laser is
n=Total Energy/Energy per photon
n=10⁷×10⁻³J /5.90×10⁻¹⁹J/photon
n= 1785 x 10¹⁹ photons
To learn about photons, refer: brainly.com/question/20912241?referrer=searchResults
#SPJ4
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.
Voltage = Current (I) × Resistance (R)
V = 10 × 28.5 = 285v