Answer:
The angle of separation is
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of violet light in diamond is 
The refractive index of red light in diamond is 
The wavelength of violet light is
The wavelength of red light is
Snell's Law can be represented mathematically as

Where
is the angle of refraction
=> 
Now considering violet light

substituting values




Now considering red light

substituting values




The angle of separation between the red light and the violet light is mathematically evaluated as

substituting values


Technician A and B are correct . Because according to technician A, the cause written on the repair order is a diagnosis. Here, by diagnosis, he means that the problem is identified after examining the device and hence the judgement is made.
And according to B, you have to write the cause of the problems in the device that have been identified and the concern measures, which is also kind of diagnosis.
So, option D is correct.
Answer:
the potential energy will also change
Explanation:
kinetic energy and potential energy are inversely proportional to each other, so if kinetic energy changes, potential energy will also change..
<span>If 1 eighth equals 1 billion 7 eighth equals 7 billion.
The asker of the second question needs a tutorial in radiometric dating. There is little likelihood that the daughter isotope has the same atomic weight as the parent isotope. To measure the mass isotopes doesn't tell us how many atoms of each exist. To get around that let's pretend — which will likely serve the purpose ineptly intended — that the values give an the particle ratio, 125:875.
The original parent isotope count was 125 + 875 = 1000. The remaining parent isotope is 125/1000 or 1/8. 1/8 = (1/2)^h, where h is the number of half-lives.
h = log (1/8) ÷ log(1/2) = 3
And 3 half-lives • 150,000 years/half-life = 450,000 years.</span>
Answer:
F= 224 N
Explanation:
Given that
mass ,m = 80 kg
Radius ,r= 5 m
speed at the top v= 8 m/s
The force at the top = F
Now by using the Second law of Newton's

Now by putting the values

Take g = 10 m/s²

F= 224 N
Therefore the force exerted by the track at the top position will be 224 N.