Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.
The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.
Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.
When the parachute deploys it increases the persons air resistance to (temporaily) greater than the force of weight. This causes them to decellerate. As they decellerate resistance decreases again until once again it balances out. Terminal velocity is reduced to a safe level, and landing without injury is possible.
Answer:
0.0312J
Explanation:
Let x be the distance the staple moves:

And spring constant is 

Hence, the potential energy is 0.0312J
Here Change in Kinetic Energy
= Work Done by Friction
Therefore, substituting the
given values to the equation, we get
0.5 * m * (vFinal^2 -
vInitial^2) = µ m g * d
Therefore
0.5*( 5.90^2 - Vfinal^2 ) =
0.100*9.8*2.10
Therefore
vfinal = 5.54 m/sec
<span> </span>
6x2=12m
6x18=108
12m+108
Simplified: m+9 bc 12/12 and 108/12