Answer:
366.90149 m/s
923.821735 J
324.734 J
Initial Kinetic energy > Final kinetic energy
Explanation:
= Mass of block = 0.072 kg
= Mass of bullet = 4.67 g
= Initial Velocity of block = 0
= Initial Velocity of bullet = 629 m/s
= Final Velocity of block = 17 m/s
= Final Velocity of bullet
In this system the linear momentum is conserved

Final Velocity of bullet is 366.90149 m/s
The initial kinetic energy

The final kinetic energy

Initial Kinetic energy > Final kinetic energy
Answer:
The ball has no momentum
Explanation:
The given parameters are;
The mass of the ball = 5 kg
The velocity of the ball = 0 (The ball is sitting on the floor without moving)
The momentum of the ball = The mass of the ball × Velocity of the ball
Therefore, the momentum of the ball = 5 kg × 0 m/s = 0
The momentum of the ball is zero, the ball has no momentum.
Answer:
The answer to your question is: 13.2 m/s
Explanation:
final speed (fs) = 77 m/s
t = 6.5 s
gravity (g) = 9.81 m/s2
initial speed (is) = ?
Formula
fs = is + gt from this equation we clear "is" = fs - gt
Substitution is = 77 - (9,81)(6.5)
Process is = 77 - 63.8
is = 13.2 m/s
A) the periodic time is given by the equation;
T= 2π√(L/g)
For the frequency will be obtained by 1/T (Hz)
T = 2 × 3.14 √ (0.66/9.81)
= 6.28 × √0.0673
= 1.6289 Seconds
Frequency = 1/T = f = 1/1.6289
thus; frequency = 0.614 Hz
b) The vertical distance, the height is given by
h= 0.66 cos 12
h = 0.65 m
Vertical fall at the lowest point = 0.66 - 0.65 = 0.01 m
Applying conservation of energy
energy lost (MgΔh) = KE gained (1/2mv²)
mgh = 1/2mv²
v² = 2gΔh = 2×9.81 × 0.01
= 0.1962
v = 0.443 m/s
c) total energy = KE + GPE = KE when GPE is equal to zero (at the lowest point possible)
Thus total energy is equal to;
E = 1/2mv²
= 1/2 × 0.310 × 0.443²
= 0.0304 J