Answer:
The volume of water evaporated is 199mL
Explanation:
Concentration is calculated with the following formula

where n is the number of moles of solute and V is the volume of the solution (in this case is the same as the solvent volume) in liters.
So we isolate the variable n to know the amount of moles, using the volume given in liters


Now, we isolate the variable V to know the new volume with the new concentration given.

Finally, the volume of water evaporated is the difference between initial and final volume.

<span>............D. Elliptical</span>
Answer:
low freezing point. high vapour pressure.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>WILL</em><em> </em><em>HELP</em><em> </em><em>U</em><em>! </em><em>!</em><em>!</em><em>!</em><em>!</em><em>!</em>
Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Answer:

Explanation:
= Mass of the Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
m = Mass of person
The force on the person will balance the gravitational force

The acceleration that the Earth will feel is 