Well according to Newton’s first law of motion, a body will remain in the state of rest or linear motion provided that an *external force* has been applied. So no, a force doesn’t need to keep a body to remain in linear motion, because F=ma, during uniform linear motion velocity is constant, hence acceleration is zero, so F=0
Answer:
to overcome the out of friction we must increase the angle of the plane
Explanation:
To answer this exercise, let's propose the solution of the problem, write Newton's second law. We define a coordinate system where the x axis is parallel to the plane and the other axis is perpendicular to the plane.
X axis
fr - Wₓ = m a (1)
Y axis
N-
= 0
N = W_{y}
let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
the friction force has the formula
fr = μ N
fr = μ Wy
fr = μ mg cos θ
from equation 1
at the point where the force equals the maximum friction force
in this case the block is still still so a = 0
F = fr
F = (μ mg) cos θ
We can see that the quantities in parentheses with constants, so as the angle increases, the applied force must be less.
This is the force that balances the friction force, any force slightly greater than F initiates the movement.
Consequently, to overcome the out of friction we must increase the angle of the plane
the correct answer is to increase the angle of the plane
Answer:51.44 units
Explanation:
Given
x component of vector is 
y component of vector is 
so position vector is

Magnitude of vector is


|r|=51.44 units
Direction

vector is in 2nd quadrant thus


Answer:
Explanation:
Gravitational law states that, the force of attraction or repulsion between two masses is directly proportional to the product of the two masses and inversely proportional to the square of their distance apart.
So,
Let the masses be M1 and M2,
F ∝ M1 × M2
Let the distance apart be R
F ∝ 1 / R²
Combining the two equation
F ∝ M1•M2 / R²
G is the constant of proportional and it is called gravitational constant
F = G•M1•M2 / R²
So, to increase the gravitational force, the masses to the object must be increased and the distance apart must be reduced.
So, option c is correct
C. Both objects have large masses and are close together.
Answer:
T = 25 N
Explanation:
The question says that "A 25 n block is suspended by a wire from the ceiling vitamin the tension that appears in the wire
?"
Weight of the block, W = 25 N
Weight of a body acts in downward direction and tension acts in upward direction. It would mean that,
Tension = weight of the block
T = mg
T = 25 N
Hence, the tension in the wire is 25 N.