Answer:
18.0 Ampere is the size of electric current that must flow.
Explanation:
Moles of electron , n = 550 mmol = 0.550 mol
1 mmol = 0.001 mol
Number of electrons = N

Charge on N electrons : Q

Duration of time charge allowed to pass = T = 49.0 min = 49.0 × 60 seconds
1 min = 60 seconds
Size of current : I



18.0 Ampere is the size of electric current that must flow.
<span><span>When you write down the electronic configuration of bromine and sodium, you get this
Na:
Br: </span></span>
<span><span />So here we the know the valence electrons for each;</span>
<span><span>Na: (2e)
Br: (7e, you don't count for the d orbitals)
Then, once you know this, you can deduce how many bonds each can do and you discover that bromine can do one bond since he has one electron missing in his p orbital, but that weirdly, since the s orbital of sodium is full and thus, should not make any bond.
However, it is possible for sodium to come in an excited state in wich he will have sent one of its electrons on an higher shell to have this valence configuration:</span></span>
<span><span /></span><span><span>
</span>where here now it has two lonely valence electrons, one on the s and the other on the p, so that it can do a total of two bonds.</span><span>That's why bromine and sodium can form </span>
<span>
</span>
Answer: The metal that has a greater reactivity is more easily oxidized.
Explanation:
Oxidation is when the elements lose electrons and increase their oxidation state.
The metals tend to react by losing electrons and form the corresponding cation.
For expample, sodium (an alkalyne metal) loses one elecron and form the cation Na¹⁺ , then this cation combine with an anion and form compounds like NaCl, NaOH. The same do the other alkalyne metals.
Magnesium (an alkalyne earth metal) loses two electrons and form the cation Mg²⁺, then it combines with some anions to form compounds, like MgSO₄, Mg(OH)₂.
So, the easier the metal gets oxidized the greater its reactivity.
Answer:
When a mixture of methane and chlorine is exposed to ultraviolet light - typically sunlight - a substitution reaction occurs and the organic product is chloromethane. CH 4 + Cl 2 → CH 3 Cl + HCl However, the reaction doesn't stop there, and all the hydrogens in the methane can in turn be replaced by chlorine atoms.
Explanation:
hope it help i try best