Answer:

Explanation:
Since
, we calculate the resistance rate by deriving this formula with respect to time:

Deriving what is left (remember that
):

So we have:

Which for our values is (the rate of <em>I(t)</em> is decreasing so we put a negative sign):

Answer:

Explanation:
The strength of the electric field produced by a charge Q is given by

where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is

and the fish can detect the electric field at a distance of

Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:

When a star uses up all of it's energy and begins to die, it swells up to become a red giant star. This causes its surface gravity to decrease, thereby allowing some of its mass to escape into space.
A binary star is a pair of stars that orbit each other because of their gravitational attraction to each other. When one member of the binary pair uses up all of its energy and begins to die, it loses mass due to the reduction in surface gravity. But instead of escaping into space, this mass is attracted to the companion star because of its gravitational pull. That increases the mass of the companion star. In a process that takes thousands of years, enough matter is transfered that causes the temperature and pressure to increase sufficiently to result in nuclear fusion reactions on the companion star. When these nuclear reactions become extremely violent, the released nuclear energy increases the brightness of this companion star dramatically, thereby creating a nova.
Therefore, it is the dying of one of the stars in a binary system along with a sufficient transfer of star mass to sustain nuclear reactions that results in a nova.
Answer:
The mass of air in the box is 0.78 grams.
Explanation:
A litre equals a cubic decimetre. By definition of density (
), in grams per litre, we calculate the mass of air inside the cube (
), in grams:
(1)
Where
is the volume occupied by air within the cube, in litres.
If we know that
and
, then the mass of air is:


The mass of air in the box is 0.78 grams.