Answer:
Explanation:
radius of the solenoid, r = 0.05 m
length of the solenoid, l = 0.39 m
Magnetic field of the solenoid, B = 2 x 10^-5 T
Number of turns, N = 200
The magnetic field of the solenoid is given by

where, i be the current and n be the number of turns per unit length
n = N / l = 200 / 0.39 = 512.8

i = 0.031 A
The correct answer to the question above is hypertonic. When celery is being placed in a glass of pure water, the solution inside its cells is going to appear as hypertonic compared to the water. This means that the cells inside has a higher concentration than outside.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Force = mass x acceleration
15 = mass x 4
Mass = 15/4
Mass = 3.75 Kg
Answer:
direction does the axis of rotation tilt toward after the blow is the z- direction
Explanation:
This is because
Due to the blow, there is a impulse imparted on the ball which gives a change in linear momentum () in the x direction
Thus When cross product of momentum in x direction is taking with r vector, we will get resultant in z direction. Hence change in angular momentum will be z direction.