Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
The horizontal speed is going to be the cosine of the given speed, therefore, the horizontal speed is 19.15 m/s. To find the time, divide the 22 m distance by the velocity. This results in 1.131 seconds, which is in between C and D.
Answer:
517.5Ns
Explanation:
F=(MV - MU)/t
where MV - MU is the change in momentum,
therefore, MV - MU = Ft
= 345 X 1.
= 517.5Ns
Answer:
c. 981 watts

Explanation:
Given:
- horizontal speed of treadmill,

- weight carried,

- grade of the treadmill,

<u>Now the power can be given by:</u>

(where grade is the rise of the front edge per 100 m of the horizontal length)

Answer:
0.08kg
Explanation:
K.E = 1/2 mv^2
v = 970m/s
K.E = 3.9x 10^3J= 3900J
K.E = 1/2 mv^2
3900 = 1/2 m x 970x 970
3900 = 1/2 ×940900m
3900 = 470450m
m = 3900/470450 = 0.00828993516 = 0.008kg