Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)
Answer:
Particles can be classified as hadrons – baryons and mesons – and leptons, each with its anti-particle, and they should know that interactions between these particles can be described in terms of transfer of other particles known as vector bosons.
Explanation:
Your Welcome, if you could give me Brainlist I would appreciate it!
<u><em>Answer:</em></u>
The ability of a substance to dissolve into another, called the solvent.
<u><em>Explanation:</em></u>
That is why water is called <u><em>"the universal solvent."</em></u>
Because it can dissolve almost anything.
The speed and temperature have nothing to do with solubility.
When waves travel across strings, the larger the tension of the string the faster the velocity of the wave. This is because of the equation:
v = the square root of (T/(m/L)) where T is the tension, m the mass of the string, and L the length of the string
Hope this helps!
Answer:
Explanation:
Given that a centripetal force is a form of force that gives rise or causes a body to move in a curved path.
Hence;
1. When a car is being driven around a track, it is the FORCE OF FRICTION that is acting upon the turned wheels of the vehicle, which transforms into the centripetal force required for circular motion.
2. When a ball being is swung on the end of a string, TENSION FORCE acts upon the ball, which transforms the centripetal force required for circular motion.
3. When the moon is orbiting the earth, it is the FORCE OF GRAVITY acting upon the moon, which transforms the centripetal force required for circular motion.
4. A rotating wheel on the other hand has NO centripetal force because centripetal force is pull towards the center of a motion. However the speed of the object is tangent to the circle, while the direction of the force is also perpendicular to the direction of the rotating wheel.