Answer:
C. 450v
Explanation:
Using
Voltage= B*distance of separation*velocity
3mm x 0.3T x 5E5m/s
= 450v
The impulse (the variation of momentum of the ball) is related to the force applied by

where

is the variation of momentum, F is the intensity of the force and

is the time of application of the force.
Using F=1000 N and

, we can find the variation of momentum:

This

can be rewritten as

where

and

are the final and initial momentum. But the ball is initially at rest, so the initial momentum is zero, and

from which we find the final velocity of the ball:
consider the forces on mass m₁ on the incline plane :
parallel to incline , force equation is given as
T - m₁ g Sin30 = m₁ a
T = m₁ g Sin30 + m₁ a eq-1
consider the force on mass m₂ on the incline plane :
m₂ g - T = m₂ a
T = m₂ g - m₂ a eq-2
Using eq-1 and eq-2
m₂ g - m₂ a = m₁ g Sin30 + m₁ a
inserting the values
(2.3 x 9.8) - 2.3 a = (3.7 x 9.8) Sin30 + 3.7 a
a = 0.74 m/s²
Answer:
Calculate the total distance travelled by the object - its motion is represented by the velocity-time graph below.
Here, the distance travelled can be found by calculating the total area of the shaded sections below the line.
½ × base × height.
½ × 4 × 8 = 16 m 2
(10 – 4) × 8 = 48 m 2
Explanation:
Answer:
see below
Explanation:
this is because particles in solids are packed very closely together, thus , the particles collide with each other frequently and thus transfer of energy is faster. however, particles in liquid are closely packed but not as close as in solid so the particles do not collide as frequently. thus, transfer of energy slower than in solid. furthermore, the particles in gas are spaced far apart from each other, thus the particles don't collide with each other frequently, thus transfer of energy is very slow in gas.
hope you get it,
please mark